Artificial Intelligence Creeps on to the African Battlefield – Brookings Institution
Even as the worlds leading militaries race to adopt artificial intelligence in anticipation of future great power war, security forces in one of the worlds most conflict-prone regions are opting for a more measured approach. In Africa, AI is gradually making its way into technologies such as advanced surveillance systems and combat drones, which are being deployed to fight organized crime, extremist groups, and violent insurgencies. Though the long-term potential for AI to impact military operations in Africa is undeniable, AIs impact on organized violence has so far been limited. These limits reflect both the novelty and constraints of existing AI-enabled technology.
Artificial intelligence and armed conflict in Africa
Artificial intelligence (AI), at its most basic, leverages computing power to simulate the behavior of humans that requires intelligence. Artificial intelligence is not a military technology like a gun or a tank. It is rather, as the University of Pennsylvanias Mark Horowitz argues, a general-purpose technology with a multitude of applications, like the internal combustion engine, electricity, or the internet. And as AI applications proliferate to military uses, it threatens to change the nature of warfare. According to the ICRC, AI and machine-learning systems could have profound implications for the role of humans in armed conflict, especially in relation to: increasing autonomy of weapon systems and other unmanned systems; new forms of cyber and information warfare; and, more broadly, the nature of decision-making.
In at least two respects, AI is already affecting the dynamics of armed conflict and violence in Africa. First, AI-driven surveillance and smart policing platforms are being used to respond to attacks by violent extremist groups and organized criminal networks. Second, the development of AI-powered drones is beginning to influence combat operations and battlefield tactics.
AI is perhaps most widely used in Africa in areas with high levels of violence to increase the capabilities and coordination of law enforcement and domestic security services. For instance, fourteen African countries deploy AI-driven surveillance and smart-policing platforms, which typically rely on deep neural networks for image classification and a range of machine learning models for predictive analytics. In Nairobi, Chinese tech giant Huawei has helped build an advanced surveillance system, and in Johannesburg automated license plate readers have enabled authorities to track violent, organized criminals with suspected ties to the Islamic State. Although such systems have significant limitations (more on this below), they are proliferating across Africa.
AI-driven systems are also being deployed to fight organized crime. At Liwonde National Park in Malawi, park rangers use EarthRanger software, developed by the late Microsoft co-founder, Paul Allen, to combat poaching using artificial intelligence and predictive analytics. The software detects patterns in poaching that the rangers might overlook, such as upticks in poaching during holidays and government paydays. A small, motion-activated poacher cam relies on an algorithm to distinguish between humans and animals and has contributed to at least one arrest. Its not difficult to imagine how such a system might be repurposed for counterinsurgency or armed conflict, with AI-enabled surveillance and monitoring systems deployed to detect and deter armed insurgents.
In addition to the growing use of AI within surveillance systems across Africa, AI has also been integrated into weapon systems. Most prominently, lethal autonomous weapons systems use real-time sensor data coupled with AI and machine learning algorithms to select and engage targets without further intervention by a human operator. Depending on how that definition is interpreted, the first use of a lethal autonomous weapon system in combat may have taken place on African soil in March 2020. That month, logistics units belonging to the armed forces of the Libyan warlord Khalifa Haftar came under attack by Turkish-made STM Kargu-2 drones as they fled Tripoli. According to a United Nations report, the Kargu-2 represented a lethal autonomous weapons system because it had been programmed to attack targets without requiring data connectivity between the operator and munition. Although other experts have instead classified the Kargu-2 as a loitering munition, its use in combat in northern Africa nonetheless points to a future where AI-enabled weapons are increasingly deployed in armed conflicts in the region.
Indeed, despite global calls for a ban on similar weapons, the proliferation of systems like the Kargu-2 is likely only beginning. Relatively low costs, tactical advantages, and the emergence of multiple suppliers have led to a booming market for low-and-mid tier combat drones currently being dominated by players including Israel, China, Turkey, and South Africa. Such drones, particularly Turkeys Bakratyar TB2, have been acquired and used by well over a dozen African countries.
While the current generation of drones by and large do not have AI-driven autonomous capabilities that are publicly acknowledged, the same cannot be said for the next generation, which are even less costly, more attritable, and use AI-assisted swarming technology to make themselves harder to defend against. In February, the South Africa-based Paramount Group announced the launch of its N-RAVEN UAV system, which it bills as a family of autonomous, multi-mission aerial vehicles featuring next-generation swarm technologies. The N-RAVEN will be able to swarm in units of up to twenty and is designed for technology transfer and portable manufacture within partner countries. These features are likely to be attractive to African militaries.
AIs limits, downsides, and risks
Though AI may continue to play an increasing role in the organizational strategies, intelligence-gathering capabilities, and battlefield tactics of armed actors in Africa and elsewhere, it is important to put these contributions in a broader perspective. AI cannot address the fundamental drivers of armed conflict, particularly the complex insurgencies common in Africa. African states and militaries may overinvest in AI, neglecting its risks and externalities, as well as the ways in which AI-driven capabilities may be mitigated or exploited by armed non-state actors.
AI is unlikely to have a transformative impact on the outbreak, duration, or mitigation of armed conflict in Africa, whose incidence has doubled over the past decade. Despite claims by its makers, there is little hard evidence linking the deployment of AI-powered smart cities with decreases in violence, including in Nairobi, where crime incidents have remained virtually unchanged since 2014, when the citys AI-driven systems first went online. The same is true of poaching. During the COVID-19 pandemic, fewer tourists and struggling local economies have fueled significant increases, overwhelming any progress that has resulted from governments adopting cutting-edge technology.
This is because, in the first place, armed conflict is a human endeavor, with many factors that influence its outcomes. Even the staunchest defenders of AI-driven solutions, such as Huawei Southern Africa Public Affairs Director David Lane, admit that they cannot address the underlying causes of insecurity such as unemployment or inequality: Ultimately, preventing crime requires addressing these causes in a very local way. No AI algorithm can prevent poverty or political exclusion, disputes over land or national resources, or political leaders from making chauvinistic appeals to group identity. Likewise, the central problems with Africas militariesendemic corruption, human rights abuses, loyalties to specific leaders and groups rather than institutions and citizens, and a proclivity for ill-timed seizures of powerare not problems that artificial intelligence alone can solve.
In the second place, the aspects of armed conflict that AI seems most likely to disruptremote intelligence-gathering capabilities and air powerare technologies that enable armies to keep enemies at arms-length and win in conventional, pitched battles. AIs utility in fighting insurgencies, in which non-state armed actors conduct guerilla attacks and seek to blend in and draw support from the population, is more questionable. To win in insurgencies requires a sustained on the ground presence to maintain order and govern contested territory. States cannot hope to prevail in such conflicts by relying on technology that effectively removes them from the fight.
Finally, the use of AI to fight modern armed conflict remains at a nascent stage. To date, the prevailing available evidence has documented how state actors are adopting AI to fight conflict, and not how armed non-state actors are responding. Nevertheless, states will not be alone in seeking to leverage autonomous weapons. Former African service members speculate that it is only a matter of time before before the deployment of swarms or clusters of offensive drones by non-state actors in Africa, given their accessibility, low costs, and existing use in surveillance and smuggling. Rights activists have raised the alarm about the potential for small, cheap, swarming slaughterbots, that use freely available AI and facial recognition systems to commit mass acts of terror. This particular scenario is controversial, but according to American Universitys Audrey Kurth Cronin, it is both technologically feasible and consistent with classic patterns of diffusion.
The AI armed conflict evolution
These downsides and risks suggest the continued diffusion of AI is unlikely to result in the revolutionary changes to armed conflict suggested by some of its more ardent proponents and backers. Rather, modern AI is perhaps best viewed as continuing and perhaps accelerating long-standing technological trends that have enhanced sensing capabilities and digitized and automated the operations and tactics of armed actors everywhere.
For all its complexity, AI is first and foremost a digital technology, its impact dependent on and difficult to disentangle from a technical triad of data, algorithms, and computing power. The impact of AI-powered surveillance platforms, from the EarthRanger software used at Liwonde to Huawei-supplied smart policing platforms, isnt just a result of machine-learning algorithms that enable human-like reasoning capabilities, but also on the ability to store, collect, process collate and manage vast quantities of data. Likewise, as pointed out by analysts such as Kelsey Atherton, the Kargu 2 used in Libya can be classified as an autonomous loitering munition such as Israels Harpy drone. The main difference between the Kargu 2 and the Harpy, which was first manufactured in 1989, is where the former uses AI-driven image recognition, the latter uses electro-optical sensors to detect and hone in on enemy radar emissions.
The diffusion of AI across Africa, like the broader diffusion of digital technology, is likely to be diverse and uneven. Africa remains the worlds least digitized region. Internet penetration rates are low and likely to remain so in many of the most conflict-prone countries. In Somalia, South Sudan, Ethiopia, the Democratic Republic of Congo, and much of the Lake Chad Basin, internet penetration is below 20%. AI is unlikely to have much of an impact on conflict in regions where citizens leave little in the way of a digital footprint, and non-state armed groups control territory beyond the easy reach of the state.
Taken together, these developments suggest that AI will cause a steady evolution in armed conflict in Africa and elsewhere, rather than revolutionize it. Digitization and the widespread adoption of autonomous weapons platforms may extend the eyes and lengthen the fists of state armies. Non-state actors will adopt these technologies themselves and come up with clever ways to exploit or negate them. Artificial intelligence will be used in combination with equally influential, but less flashy inventions such as the AK-47, the nonstandard tactical vehicle, and the IED to enable new tactics that take advantage or exploit trends towards better sensing capabilities and increased mobility.
Incrementally and in concert with other emerging technologies, AI is transforming the tools and tactics of warfare. Nevertheless, experience from Africa suggests that humans will remain the main actors in the drama of modern armed conflict.
Nathaniel Allen is an assistant professor with the Africa Center for Strategic Studies at National Defense University and a Council on Foreign Relations term member. Marian Ify Okpali is a researcher on cyber policy and an academic specialist at the Africa Center for Strategic Studies at National Defense University. The opinions expressed in this article are those of the authors.
Microsoft provides financial support to the Brookings Institution, a nonprofit organization devoted to rigorous, independent, in-depth public policy research.
Originally posted here:
Artificial Intelligence Creeps on to the African Battlefield - Brookings Institution
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]