Artificial Intelligence Creeps on to the African Battlefield – Brookings Institution
Even as the worlds leading militaries race to adopt artificial intelligence in anticipation of future great power war, security forces in one of the worlds most conflict-prone regions are opting for a more measured approach. In Africa, AI is gradually making its way into technologies such as advanced surveillance systems and combat drones, which are being deployed to fight organized crime, extremist groups, and violent insurgencies. Though the long-term potential for AI to impact military operations in Africa is undeniable, AIs impact on organized violence has so far been limited. These limits reflect both the novelty and constraints of existing AI-enabled technology.
Artificial intelligence and armed conflict in Africa
Artificial intelligence (AI), at its most basic, leverages computing power to simulate the behavior of humans that requires intelligence. Artificial intelligence is not a military technology like a gun or a tank. It is rather, as the University of Pennsylvanias Mark Horowitz argues, a general-purpose technology with a multitude of applications, like the internal combustion engine, electricity, or the internet. And as AI applications proliferate to military uses, it threatens to change the nature of warfare. According to the ICRC, AI and machine-learning systems could have profound implications for the role of humans in armed conflict, especially in relation to: increasing autonomy of weapon systems and other unmanned systems; new forms of cyber and information warfare; and, more broadly, the nature of decision-making.
In at least two respects, AI is already affecting the dynamics of armed conflict and violence in Africa. First, AI-driven surveillance and smart policing platforms are being used to respond to attacks by violent extremist groups and organized criminal networks. Second, the development of AI-powered drones is beginning to influence combat operations and battlefield tactics.
AI is perhaps most widely used in Africa in areas with high levels of violence to increase the capabilities and coordination of law enforcement and domestic security services. For instance, fourteen African countries deploy AI-driven surveillance and smart-policing platforms, which typically rely on deep neural networks for image classification and a range of machine learning models for predictive analytics. In Nairobi, Chinese tech giant Huawei has helped build an advanced surveillance system, and in Johannesburg automated license plate readers have enabled authorities to track violent, organized criminals with suspected ties to the Islamic State. Although such systems have significant limitations (more on this below), they are proliferating across Africa.
AI-driven systems are also being deployed to fight organized crime. At Liwonde National Park in Malawi, park rangers use EarthRanger software, developed by the late Microsoft co-founder, Paul Allen, to combat poaching using artificial intelligence and predictive analytics. The software detects patterns in poaching that the rangers might overlook, such as upticks in poaching during holidays and government paydays. A small, motion-activated poacher cam relies on an algorithm to distinguish between humans and animals and has contributed to at least one arrest. Its not difficult to imagine how such a system might be repurposed for counterinsurgency or armed conflict, with AI-enabled surveillance and monitoring systems deployed to detect and deter armed insurgents.
In addition to the growing use of AI within surveillance systems across Africa, AI has also been integrated into weapon systems. Most prominently, lethal autonomous weapons systems use real-time sensor data coupled with AI and machine learning algorithms to select and engage targets without further intervention by a human operator. Depending on how that definition is interpreted, the first use of a lethal autonomous weapon system in combat may have taken place on African soil in March 2020. That month, logistics units belonging to the armed forces of the Libyan warlord Khalifa Haftar came under attack by Turkish-made STM Kargu-2 drones as they fled Tripoli. According to a United Nations report, the Kargu-2 represented a lethal autonomous weapons system because it had been programmed to attack targets without requiring data connectivity between the operator and munition. Although other experts have instead classified the Kargu-2 as a loitering munition, its use in combat in northern Africa nonetheless points to a future where AI-enabled weapons are increasingly deployed in armed conflicts in the region.
Indeed, despite global calls for a ban on similar weapons, the proliferation of systems like the Kargu-2 is likely only beginning. Relatively low costs, tactical advantages, and the emergence of multiple suppliers have led to a booming market for low-and-mid tier combat drones currently being dominated by players including Israel, China, Turkey, and South Africa. Such drones, particularly Turkeys Bakratyar TB2, have been acquired and used by well over a dozen African countries.
While the current generation of drones by and large do not have AI-driven autonomous capabilities that are publicly acknowledged, the same cannot be said for the next generation, which are even less costly, more attritable, and use AI-assisted swarming technology to make themselves harder to defend against. In February, the South Africa-based Paramount Group announced the launch of its N-RAVEN UAV system, which it bills as a family of autonomous, multi-mission aerial vehicles featuring next-generation swarm technologies. The N-RAVEN will be able to swarm in units of up to twenty and is designed for technology transfer and portable manufacture within partner countries. These features are likely to be attractive to African militaries.
AIs limits, downsides, and risks
Though AI may continue to play an increasing role in the organizational strategies, intelligence-gathering capabilities, and battlefield tactics of armed actors in Africa and elsewhere, it is important to put these contributions in a broader perspective. AI cannot address the fundamental drivers of armed conflict, particularly the complex insurgencies common in Africa. African states and militaries may overinvest in AI, neglecting its risks and externalities, as well as the ways in which AI-driven capabilities may be mitigated or exploited by armed non-state actors.
AI is unlikely to have a transformative impact on the outbreak, duration, or mitigation of armed conflict in Africa, whose incidence has doubled over the past decade. Despite claims by its makers, there is little hard evidence linking the deployment of AI-powered smart cities with decreases in violence, including in Nairobi, where crime incidents have remained virtually unchanged since 2014, when the citys AI-driven systems first went online. The same is true of poaching. During the COVID-19 pandemic, fewer tourists and struggling local economies have fueled significant increases, overwhelming any progress that has resulted from governments adopting cutting-edge technology.
This is because, in the first place, armed conflict is a human endeavor, with many factors that influence its outcomes. Even the staunchest defenders of AI-driven solutions, such as Huawei Southern Africa Public Affairs Director David Lane, admit that they cannot address the underlying causes of insecurity such as unemployment or inequality: Ultimately, preventing crime requires addressing these causes in a very local way. No AI algorithm can prevent poverty or political exclusion, disputes over land or national resources, or political leaders from making chauvinistic appeals to group identity. Likewise, the central problems with Africas militariesendemic corruption, human rights abuses, loyalties to specific leaders and groups rather than institutions and citizens, and a proclivity for ill-timed seizures of powerare not problems that artificial intelligence alone can solve.
In the second place, the aspects of armed conflict that AI seems most likely to disruptremote intelligence-gathering capabilities and air powerare technologies that enable armies to keep enemies at arms-length and win in conventional, pitched battles. AIs utility in fighting insurgencies, in which non-state armed actors conduct guerilla attacks and seek to blend in and draw support from the population, is more questionable. To win in insurgencies requires a sustained on the ground presence to maintain order and govern contested territory. States cannot hope to prevail in such conflicts by relying on technology that effectively removes them from the fight.
Finally, the use of AI to fight modern armed conflict remains at a nascent stage. To date, the prevailing available evidence has documented how state actors are adopting AI to fight conflict, and not how armed non-state actors are responding. Nevertheless, states will not be alone in seeking to leverage autonomous weapons. Former African service members speculate that it is only a matter of time before before the deployment of swarms or clusters of offensive drones by non-state actors in Africa, given their accessibility, low costs, and existing use in surveillance and smuggling. Rights activists have raised the alarm about the potential for small, cheap, swarming slaughterbots, that use freely available AI and facial recognition systems to commit mass acts of terror. This particular scenario is controversial, but according to American Universitys Audrey Kurth Cronin, it is both technologically feasible and consistent with classic patterns of diffusion.
The AI armed conflict evolution
These downsides and risks suggest the continued diffusion of AI is unlikely to result in the revolutionary changes to armed conflict suggested by some of its more ardent proponents and backers. Rather, modern AI is perhaps best viewed as continuing and perhaps accelerating long-standing technological trends that have enhanced sensing capabilities and digitized and automated the operations and tactics of armed actors everywhere.
For all its complexity, AI is first and foremost a digital technology, its impact dependent on and difficult to disentangle from a technical triad of data, algorithms, and computing power. The impact of AI-powered surveillance platforms, from the EarthRanger software used at Liwonde to Huawei-supplied smart policing platforms, isnt just a result of machine-learning algorithms that enable human-like reasoning capabilities, but also on the ability to store, collect, process collate and manage vast quantities of data. Likewise, as pointed out by analysts such as Kelsey Atherton, the Kargu 2 used in Libya can be classified as an autonomous loitering munition such as Israels Harpy drone. The main difference between the Kargu 2 and the Harpy, which was first manufactured in 1989, is where the former uses AI-driven image recognition, the latter uses electro-optical sensors to detect and hone in on enemy radar emissions.
The diffusion of AI across Africa, like the broader diffusion of digital technology, is likely to be diverse and uneven. Africa remains the worlds least digitized region. Internet penetration rates are low and likely to remain so in many of the most conflict-prone countries. In Somalia, South Sudan, Ethiopia, the Democratic Republic of Congo, and much of the Lake Chad Basin, internet penetration is below 20%. AI is unlikely to have much of an impact on conflict in regions where citizens leave little in the way of a digital footprint, and non-state armed groups control territory beyond the easy reach of the state.
Taken together, these developments suggest that AI will cause a steady evolution in armed conflict in Africa and elsewhere, rather than revolutionize it. Digitization and the widespread adoption of autonomous weapons platforms may extend the eyes and lengthen the fists of state armies. Non-state actors will adopt these technologies themselves and come up with clever ways to exploit or negate them. Artificial intelligence will be used in combination with equally influential, but less flashy inventions such as the AK-47, the nonstandard tactical vehicle, and the IED to enable new tactics that take advantage or exploit trends towards better sensing capabilities and increased mobility.
Incrementally and in concert with other emerging technologies, AI is transforming the tools and tactics of warfare. Nevertheless, experience from Africa suggests that humans will remain the main actors in the drama of modern armed conflict.
Nathaniel Allen is an assistant professor with the Africa Center for Strategic Studies at National Defense University and a Council on Foreign Relations term member. Marian Ify Okpali is a researcher on cyber policy and an academic specialist at the Africa Center for Strategic Studies at National Defense University. The opinions expressed in this article are those of the authors.
Microsoft provides financial support to the Brookings Institution, a nonprofit organization devoted to rigorous, independent, in-depth public policy research.
Originally posted here:
Artificial Intelligence Creeps on to the African Battlefield - Brookings Institution
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]