Artificial Intelligence Creeps on to the African Battlefield – Brookings Institution
Even as the worlds leading militaries race to adopt artificial intelligence in anticipation of future great power war, security forces in one of the worlds most conflict-prone regions are opting for a more measured approach. In Africa, AI is gradually making its way into technologies such as advanced surveillance systems and combat drones, which are being deployed to fight organized crime, extremist groups, and violent insurgencies. Though the long-term potential for AI to impact military operations in Africa is undeniable, AIs impact on organized violence has so far been limited. These limits reflect both the novelty and constraints of existing AI-enabled technology.
Artificial intelligence and armed conflict in Africa
Artificial intelligence (AI), at its most basic, leverages computing power to simulate the behavior of humans that requires intelligence. Artificial intelligence is not a military technology like a gun or a tank. It is rather, as the University of Pennsylvanias Mark Horowitz argues, a general-purpose technology with a multitude of applications, like the internal combustion engine, electricity, or the internet. And as AI applications proliferate to military uses, it threatens to change the nature of warfare. According to the ICRC, AI and machine-learning systems could have profound implications for the role of humans in armed conflict, especially in relation to: increasing autonomy of weapon systems and other unmanned systems; new forms of cyber and information warfare; and, more broadly, the nature of decision-making.
In at least two respects, AI is already affecting the dynamics of armed conflict and violence in Africa. First, AI-driven surveillance and smart policing platforms are being used to respond to attacks by violent extremist groups and organized criminal networks. Second, the development of AI-powered drones is beginning to influence combat operations and battlefield tactics.
AI is perhaps most widely used in Africa in areas with high levels of violence to increase the capabilities and coordination of law enforcement and domestic security services. For instance, fourteen African countries deploy AI-driven surveillance and smart-policing platforms, which typically rely on deep neural networks for image classification and a range of machine learning models for predictive analytics. In Nairobi, Chinese tech giant Huawei has helped build an advanced surveillance system, and in Johannesburg automated license plate readers have enabled authorities to track violent, organized criminals with suspected ties to the Islamic State. Although such systems have significant limitations (more on this below), they are proliferating across Africa.
AI-driven systems are also being deployed to fight organized crime. At Liwonde National Park in Malawi, park rangers use EarthRanger software, developed by the late Microsoft co-founder, Paul Allen, to combat poaching using artificial intelligence and predictive analytics. The software detects patterns in poaching that the rangers might overlook, such as upticks in poaching during holidays and government paydays. A small, motion-activated poacher cam relies on an algorithm to distinguish between humans and animals and has contributed to at least one arrest. Its not difficult to imagine how such a system might be repurposed for counterinsurgency or armed conflict, with AI-enabled surveillance and monitoring systems deployed to detect and deter armed insurgents.
In addition to the growing use of AI within surveillance systems across Africa, AI has also been integrated into weapon systems. Most prominently, lethal autonomous weapons systems use real-time sensor data coupled with AI and machine learning algorithms to select and engage targets without further intervention by a human operator. Depending on how that definition is interpreted, the first use of a lethal autonomous weapon system in combat may have taken place on African soil in March 2020. That month, logistics units belonging to the armed forces of the Libyan warlord Khalifa Haftar came under attack by Turkish-made STM Kargu-2 drones as they fled Tripoli. According to a United Nations report, the Kargu-2 represented a lethal autonomous weapons system because it had been programmed to attack targets without requiring data connectivity between the operator and munition. Although other experts have instead classified the Kargu-2 as a loitering munition, its use in combat in northern Africa nonetheless points to a future where AI-enabled weapons are increasingly deployed in armed conflicts in the region.
Indeed, despite global calls for a ban on similar weapons, the proliferation of systems like the Kargu-2 is likely only beginning. Relatively low costs, tactical advantages, and the emergence of multiple suppliers have led to a booming market for low-and-mid tier combat drones currently being dominated by players including Israel, China, Turkey, and South Africa. Such drones, particularly Turkeys Bakratyar TB2, have been acquired and used by well over a dozen African countries.
While the current generation of drones by and large do not have AI-driven autonomous capabilities that are publicly acknowledged, the same cannot be said for the next generation, which are even less costly, more attritable, and use AI-assisted swarming technology to make themselves harder to defend against. In February, the South Africa-based Paramount Group announced the launch of its N-RAVEN UAV system, which it bills as a family of autonomous, multi-mission aerial vehicles featuring next-generation swarm technologies. The N-RAVEN will be able to swarm in units of up to twenty and is designed for technology transfer and portable manufacture within partner countries. These features are likely to be attractive to African militaries.
AIs limits, downsides, and risks
Though AI may continue to play an increasing role in the organizational strategies, intelligence-gathering capabilities, and battlefield tactics of armed actors in Africa and elsewhere, it is important to put these contributions in a broader perspective. AI cannot address the fundamental drivers of armed conflict, particularly the complex insurgencies common in Africa. African states and militaries may overinvest in AI, neglecting its risks and externalities, as well as the ways in which AI-driven capabilities may be mitigated or exploited by armed non-state actors.
AI is unlikely to have a transformative impact on the outbreak, duration, or mitigation of armed conflict in Africa, whose incidence has doubled over the past decade. Despite claims by its makers, there is little hard evidence linking the deployment of AI-powered smart cities with decreases in violence, including in Nairobi, where crime incidents have remained virtually unchanged since 2014, when the citys AI-driven systems first went online. The same is true of poaching. During the COVID-19 pandemic, fewer tourists and struggling local economies have fueled significant increases, overwhelming any progress that has resulted from governments adopting cutting-edge technology.
This is because, in the first place, armed conflict is a human endeavor, with many factors that influence its outcomes. Even the staunchest defenders of AI-driven solutions, such as Huawei Southern Africa Public Affairs Director David Lane, admit that they cannot address the underlying causes of insecurity such as unemployment or inequality: Ultimately, preventing crime requires addressing these causes in a very local way. No AI algorithm can prevent poverty or political exclusion, disputes over land or national resources, or political leaders from making chauvinistic appeals to group identity. Likewise, the central problems with Africas militariesendemic corruption, human rights abuses, loyalties to specific leaders and groups rather than institutions and citizens, and a proclivity for ill-timed seizures of powerare not problems that artificial intelligence alone can solve.
In the second place, the aspects of armed conflict that AI seems most likely to disruptremote intelligence-gathering capabilities and air powerare technologies that enable armies to keep enemies at arms-length and win in conventional, pitched battles. AIs utility in fighting insurgencies, in which non-state armed actors conduct guerilla attacks and seek to blend in and draw support from the population, is more questionable. To win in insurgencies requires a sustained on the ground presence to maintain order and govern contested territory. States cannot hope to prevail in such conflicts by relying on technology that effectively removes them from the fight.
Finally, the use of AI to fight modern armed conflict remains at a nascent stage. To date, the prevailing available evidence has documented how state actors are adopting AI to fight conflict, and not how armed non-state actors are responding. Nevertheless, states will not be alone in seeking to leverage autonomous weapons. Former African service members speculate that it is only a matter of time before before the deployment of swarms or clusters of offensive drones by non-state actors in Africa, given their accessibility, low costs, and existing use in surveillance and smuggling. Rights activists have raised the alarm about the potential for small, cheap, swarming slaughterbots, that use freely available AI and facial recognition systems to commit mass acts of terror. This particular scenario is controversial, but according to American Universitys Audrey Kurth Cronin, it is both technologically feasible and consistent with classic patterns of diffusion.
The AI armed conflict evolution
These downsides and risks suggest the continued diffusion of AI is unlikely to result in the revolutionary changes to armed conflict suggested by some of its more ardent proponents and backers. Rather, modern AI is perhaps best viewed as continuing and perhaps accelerating long-standing technological trends that have enhanced sensing capabilities and digitized and automated the operations and tactics of armed actors everywhere.
For all its complexity, AI is first and foremost a digital technology, its impact dependent on and difficult to disentangle from a technical triad of data, algorithms, and computing power. The impact of AI-powered surveillance platforms, from the EarthRanger software used at Liwonde to Huawei-supplied smart policing platforms, isnt just a result of machine-learning algorithms that enable human-like reasoning capabilities, but also on the ability to store, collect, process collate and manage vast quantities of data. Likewise, as pointed out by analysts such as Kelsey Atherton, the Kargu 2 used in Libya can be classified as an autonomous loitering munition such as Israels Harpy drone. The main difference between the Kargu 2 and the Harpy, which was first manufactured in 1989, is where the former uses AI-driven image recognition, the latter uses electro-optical sensors to detect and hone in on enemy radar emissions.
The diffusion of AI across Africa, like the broader diffusion of digital technology, is likely to be diverse and uneven. Africa remains the worlds least digitized region. Internet penetration rates are low and likely to remain so in many of the most conflict-prone countries. In Somalia, South Sudan, Ethiopia, the Democratic Republic of Congo, and much of the Lake Chad Basin, internet penetration is below 20%. AI is unlikely to have much of an impact on conflict in regions where citizens leave little in the way of a digital footprint, and non-state armed groups control territory beyond the easy reach of the state.
Taken together, these developments suggest that AI will cause a steady evolution in armed conflict in Africa and elsewhere, rather than revolutionize it. Digitization and the widespread adoption of autonomous weapons platforms may extend the eyes and lengthen the fists of state armies. Non-state actors will adopt these technologies themselves and come up with clever ways to exploit or negate them. Artificial intelligence will be used in combination with equally influential, but less flashy inventions such as the AK-47, the nonstandard tactical vehicle, and the IED to enable new tactics that take advantage or exploit trends towards better sensing capabilities and increased mobility.
Incrementally and in concert with other emerging technologies, AI is transforming the tools and tactics of warfare. Nevertheless, experience from Africa suggests that humans will remain the main actors in the drama of modern armed conflict.
Nathaniel Allen is an assistant professor with the Africa Center for Strategic Studies at National Defense University and a Council on Foreign Relations term member. Marian Ify Okpali is a researcher on cyber policy and an academic specialist at the Africa Center for Strategic Studies at National Defense University. The opinions expressed in this article are those of the authors.
Microsoft provides financial support to the Brookings Institution, a nonprofit organization devoted to rigorous, independent, in-depth public policy research.
Originally posted here:
Artificial Intelligence Creeps on to the African Battlefield - Brookings Institution
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]