At Artificial General Intelligence (AGI) Conference, DRLearner is Released as Open-Source Code — Democratizing Public Access to State-of-the-Art…
SEATTLE, Aug. 19, 2022 /PRNewswire/ -- The 15th annual Artificial General Intelligence (AGI) Conference opens today at Seattle's Crocodile Venue. Running from August 19-22, the AGI conference event includes in-person events, live streaming, and fee-based video accessand features a diverse set of presentations from accomplished leaders in AI research.
As the AGI community convenes, it continues to promote efforts to democratize AI access and benefits. To that end, several AGI-22 presentations will officially launch DRLearneran open source project to broaden AI access and innovation by distributing AI/Machine Learning code that rivals or exceeds human intelligence across a diverse set of widely acknowledged benchmarks. (Within the AI research community these Arcade Learning Environment [ALE] benchmark tests are widely accepted as a proxy for situational intelligence.)
"Until now, tools at this level in 'Deep Reinforcement Learning' have been available only to the largest corporations and R&D labs," said project lead Chris Poulin. "But with the open-source release of the DRLearner code, we are helping democratize access to state-of-the-art machine learning tools of high-performance reinforcement learning," continued Poulin.
Ben Goertzel, Chairman of the AGI Society and AGI Conference Series, contextualized DRLearner as well-aligned with the goals of the AGI conference. "Democratizing AI has long been a central mission, both for me and for many colleagues. With AGI-22 we push this mission forward by fostering diversity in AGI architectures and approaches, beyond the narrower scope currently getting most of the focus in the Big Tech world," Goertzel said.
DRLearner project presentations include:
"Open Source Deep Reinforcement Learning" General Interest Keynote presented by Chris Poulin, Project Lead. (Journalists Note: Poulin's initial keynote is scheduled for Sunday, August 21. On this day the AGI-22 Conference is open to the general public.)
"Open Source Deep Reinforcement Learning: Deep Dive" Technical Keynote by Chris Poulin and co-principal author Phil Tabor. (Monday, August 22)
"Demo of Open Source DRLearner Tool" Code Demo by co-author Dzvinka Yarish (Monday, August 22)
Story continues
Poulin also noted the importance of managing expectations on the benefits on what DRLearner will, and will not, provide in its initial Beta release: "Fully implementing this state-of-the-art ML capability requires considerable computational power on the cloud, so we advise implementors to maintain realistic expectations regarding any deployment". DRLearner's benefits could be substantial, however, for the numerous organizations who have substantial computing budgets: analytical insights, expanded research capability, and perhaps a competitive advantage. "And for those whose professional lives are focused on AGI, this is an exciting time, as DRLearner can enhance their neural network training efforts" Poulin said.
Drawing on his working experience with both US and Ukrainian computer scientists and software developers, Poulin assembled an international team of expert developers to complete the open-source project. (See more about 'DRLearner's International Dev Team' below.)
A final noteworthy addition, is that the work of Poulin et al was advised by Adria Puigdomenech Badia of DeepMind. "DRLearner provides a great implementation of reinforcement learning algorithms, specifically including the curiosity approach that we had pioneered at DeepMind," said Puigdomenech Badia. Poulin likewise had high praise for the DeepMind's prior "Agent 57" achievement: "Agent 57 was one of a limited number of implementations (at Deep Mind) that consistently beat human benchmarks. And due to the elegant simplicity of its particular design, and help of Adria, it was the best candidate to inspire our software implementation," Poulin said.
ON ARTIFICIAL GENERAL INTELLIGENCE & THE AGI CONFERENCE GOALS
The original goal of the AI field was the construction of "thinking machines"computer systems with human-like general intelligence. Given the difficulty of that challenge, however, AI researchers in recent decades have focused instead on "narrow AI"systems displaying intelligence regarding specific, highly constrained tasks. But the AGI conference series never gave up on this field's ambitious vision; and throughout its fifteen-year existence AGI has promoted the resurgence of broader research on "artificial intelligence"in the original sense of that term.
And in recent years more and more researchers have recognized the necessity and feasibility of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of "human level intelligence" and "artificial general intelligence (AGI)." AGI leaders are committed to continuing the organization's longstanding leadership roleby encouraging and exploring interdisciplinary research based on different understandings of intelligence.
Today, the AGI conference remains the only major conference series devoted wholly and specifically to the creation of AI systems possessing general intelligence at the human level, and ultimately beyond. By convening AI/ML researchers for presentations and discussions, AGI conferences accelerate progress toward our common general intelligence goal.
About the AGI-22 Conference: visit https://agi-conf.org/2022/
About the DRLearner Project: visit http://www.drlearner.org
About Chris Poulin: Poulin specializes in real-time prediction frameworks at Patterns and Predictions, a leading firm in predictive analytics and scalable machine learning. Poulin is also an Advisor at Singularity NET & Singularity DAO. Previously at Microsoft, Poulin was a subject-matter-expert (senior director) in machine learning and data science. He also served as Director & Principal Investigator of the Durkheim Project, a DARPA-sponsored nonprofit collaboration with the U.S. Veterans Administration. At Dartmouth College, Poulin was co-director of the Dartmouth Meta-learning Working Group, and IARPA-sponsored project focused on large-scale machine learning. He also has lectured on artificial intelligence and big data at the U.S. Naval War College. Poulin is co-author of the book Artificial Intelligence in Behavioral and Mental Health (Elsevier, 2015). Chris Poulin's LinkedIn Profile
About Ben Goertzel: Chairman of the AGI Society and AGI Conference Series, Goetzel is CEO of SingularityNET, which brings AI and blockchain together to create a decentralized open market for AIs. SingularityNET is a medium for AGI creation and emergence, a way to roll out superior AI-as-a-service to vertical markets, and a vehicle for enabling public contributions toand benefits fromartificial intelligence. In addition to AGI, Goetzel's passions include life extension biology, philosophy of mind, psi, consciousness, complex systems, improvisational music, experimental fiction, theoretical physics, and metaphysics. For general links to various of his pursuits present and past, see the Goetzel.org website. Ben Goetzel's LinkedIn Profile
About Adria Puigdomenech Badia: For the past seven years Badia has been at DeepMind, where he has specialized in the development of deep reinforcement learning algorithms. Examples of this include 'Asynchronous Methods for reinforcement learning' where he and Vlad Mnih (DeepMind) proposed A3C - 'Neural episodic control'. Badia's recent projects include 'Never Give Up' and 'Agent57' algorithms, addressing one of the most challenging problems of RL: the exploration problem.
DRLearner's International Dev Team:
Chris Poulin (Project Lead-US)Phil Tabor (Co-Lead-US)Dzvinka Yarish (Ukraine)Ostap Viniavskyi (Ukraine)Oleksandr Buiko (Ukraine)Yuriy Pryyma (Ukraine)Mariana Temnyk (Ukraine)Volodymyr Karpiv (Ukraine) Mykola Maksymenko (Advisor-Ukraine)Iurii Milovanov (Advisor-Ukraine)
For media inquiries about the DRLearner project, please contact:
Gregory PetersonArchetype Communicationsgpeterson@archetypecommunications.com
For general inquiries about the AGI-22 Conference, please contact:
Jenny CorlettApril Sixsingularitynet@aprilsix.com
SOURCE drlearner.org
- Machine learning-random forest model was used to construct gene signature associated with cuproptosis to predict the prognosis of gastric cancer -... - February 5th, 2025 [February 5th, 2025]
- Machine learning for predicting severe dengue in Puerto Rico - Infectious Diseases of Poverty - BioMed Central - February 5th, 2025 [February 5th, 2025]
- Panoramic radiographic features for machine learning based detection of mandibular third molar root and inferior alveolar canal contact - Nature.com - February 5th, 2025 [February 5th, 2025]
- AI and machine learning: revolutionising drug discovery and transforming patient care - Roche - February 5th, 2025 [February 5th, 2025]
- Development of a machine learning model related to explore the association between heavy metal exposure and alveolar bone loss among US adults... - February 5th, 2025 [February 5th, 2025]
- Identification of therapeutic targets for Alzheimers Disease Treatment using bioinformatics and machine learning - Nature.com - February 5th, 2025 [February 5th, 2025]
- A novel aggregated coefficient ranking based feature selection strategy for enhancing the diagnosis of breast cancer classification using machine... - February 5th, 2025 [February 5th, 2025]
- Performance prediction and optimization of a high-efficiency tessellated diamond fractal MIMO antenna for terahertz 6G communication using machine... - February 5th, 2025 [February 5th, 2025]
- How machine learning and AI can be harnessed for mission-based lending - ImpactAlpha - January 27th, 2025 [January 27th, 2025]
- Machine learning meta-analysis identifies individual characteristics moderating cognitive intervention efficacy for anxiety and depression symptoms -... - January 27th, 2025 [January 27th, 2025]
- Using robotics to introduce AI and machine learning concepts into the elementary classroom - George Mason University - January 27th, 2025 [January 27th, 2025]
- Machine learning to identify environmental drivers of phytoplankton blooms in the Southern Baltic Sea - Nature.com - January 27th, 2025 [January 27th, 2025]
- Why Most Machine Learning Projects Fail to Reach Production and How to Beat the Odds - InfoQ.com - January 27th, 2025 [January 27th, 2025]
- Exploring the intersection of AI and climate physics: Machine learning's role in advancing climate science - Phys.org - January 27th, 2025 [January 27th, 2025]
- 5 Questions with Jonah Berger: Using Artificial Intelligence and Machine Learning in Litigation - Cornerstone Research - January 27th, 2025 [January 27th, 2025]
- Modernizing Patient Support: Harnessing Advanced Automation, Artificial Intelligence and Machine Learning to Improve Efficiency and Performance of... - January 27th, 2025 [January 27th, 2025]
- Param Popat Leads the Way in Transforming Machine Learning Systems - Tech Times - January 27th, 2025 [January 27th, 2025]
- Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods - Nature.com - January 27th, 2025 [January 27th, 2025]
- Machine learning is bringing back an infamous pseudoscience used to fuel racism - ZME Science - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning are Redefining Customer Experience Management - Customer Think - January 27th, 2025 [January 27th, 2025]
- Machine Learning Data Catalog Software Market Strategic Insights and Key Innovations: Leading Companies and... - WhaTech - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning Will Influence Fintech Frontend Development in 2025 - Benzinga - January 27th, 2025 [January 27th, 2025]
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]