Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms | npj Digital Medicine -…
Liang, T.-W. & Tarsy, D. In Up to Date (ed. Post, T. W.) (UpToDate, 2021).
Powers, R. et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinsons disease. Sci. Transl. Med. 13, eabd7865 (2021).
Rovini, E., Maremmani, C. & Cavallo, F. How wearable sensors can support Parkinsons disease diagnosis and treatment: a systematic review. Front. Neurosci. 11, 555 (2017).
Kovosi, S. & Freeman, M. Administering medications for Parkinsons disease on time. Nursing 41, 66 (2011).
PubMed Google Scholar
Grissinger, M. Delayed administration and contraindicated drugs place hospitalized Parkinsons disease patients at. Risk. P T 43, 1039 (2018).
PubMed Google Scholar
Groiss, S. J., Wojtecki, L., Sdmeyer, M. & Schnitzler, A. Deep brain stimulation in Parkinsons disease. Ther. Adv. Neurol. Disord. 2, 2028 (2009).
CAS PubMed PubMed Central Google Scholar
Movement Disorder Society Task Force on Rating Scales for Parkinsons Disease. The unified Parkinsons disease Rating Scale (UPDRS): status and recommendations. Mov. Disord. 18, 738750 (2003).
Google Scholar
Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinsons Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov. Disord. 22, 4147 (2007).
PubMed Google Scholar
Louis, E. D. et al. Clinical correlates of action tremor in Parkinson disease. Arch. Neurol. 58, 1630 (2001).
CAS PubMed Google Scholar
Heldman, D. A. et al. The Modified Bradykinesia Rating Scale for Parkinsons disease: reliability and comparison with kinematic measures. Mov. Disord. 26, 18591863 (2011).
PubMed PubMed Central Google Scholar
Bathien, N., Koutlidis, R. M. & Rondot, P. EMG patterns in abnormal involuntary movements induced by neuroleptics. J. Neurol. Neurosurg. Psychiatry 47, 10021008 (1984).
CAS PubMed PubMed Central Google Scholar
Andrews, C. J. Influence of dystonia on the response to long-term L-dopa therapy in Parkinsons disease. J. Neurol. Neurosurg. Psychiatry 36, 630636 (1973).
CAS PubMed PubMed Central Google Scholar
Milner-Brown, H. S., Fisher, M. A. & Weiner, W. J. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J. Neurol. Neurosurg. Psychiatry 42, 3541 (1979).
CAS PubMed PubMed Central Google Scholar
Hacisalihzade, S. S., Albani, C. & Mansour, M. Measuring parkinsonian symptoms with a tracking device. Comput. Methods Prog. Biomed. 27, 257268 (1988).
CAS Google Scholar
Beuter, A., de Geoffroy, A. & Cordo, P. The measurement of tremor using simple laser systems. J. Neurosci. Methods 53, 4754 (1994).
CAS PubMed Google Scholar
Weller, C. et al. Defining small differences in efficacy between anti-parkinsonian agents using gait analysis: a comparison of two controlled release formulations of levodopa/decarboxylase inhibitor. Br. J. Clin. Pharm. 35, 379385 (1993).
CAS Google Scholar
OSuilleabhain, P. E. & Dewey, R. B. Validation for tremor quantification of an electromagnetic tracking device. Mov. Disord. 16, 265271 (2001).
PubMed Google Scholar
Deuschl, G., Lauk, M. & Timmer, J. Tremor classification and tremor time series analysis. Chaos: Interdiscip. J. Nonlinear Sci. 5, 48 (1998).
Google Scholar
Spyers-Ashby, J. M., Stokes, M. J., Bain, P. G. & Roberts, S. J. Classification of normal and pathological tremors using a multidimensional electromagnetic system. Med. Eng. Phys. 21, 713723 (1999).
CAS PubMed Google Scholar
Rajaraman, V. et al. A novel quantitative method for 3D measurement of Parkinsonian tremor. Clin. Neurophysiol. 111, 338343 (2000).
CAS PubMed Google Scholar
Hoff, J. I., van der Meer, V. & van Hilten, J. J. Accuracy of objective ambulatory accelerometry in detecting motor complications in patients with Parkinsons disease. Clin. Neuropharmacol. 27, 5357 (2004).
CAS PubMed Google Scholar
Dunnewold, R. J. W. et al. Ambulatory quantitative assessment of body position, bradykinesia, and hypokinesia in Parkinsons disease. J. Clin. Neurophysiol. 15, 235242 (1998).
CAS PubMed Google Scholar
Hoff, J. I., van den Plas, A. A., Wagemans, E. A. & van Hilten, J. J. Accelerometric assessment of levodopa-induced dyskinesias in Parkinsons disease. Mov. Disord. 16, 5861 (2001).
CAS PubMed Google Scholar
Dunnewold, R. J. W., Jacobi, C. E. & van Hilten, J. J. Quantitative assessment of bradykinesia in patients with Parkinsons disease. J. Neurosci. Methods 74, 107112 (1997).
CAS PubMed Google Scholar
Salarian, A. et al. Quantification of tremor and bradykinesia in Parkinsons disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 54, 313322 (2007).
PubMed Google Scholar
Mera, T. O., Heldman, D. A., Espay, A. J., Payne, M. & Giuffrida, J. P. Feasibility of home-based automated Parkinsons disease motor assessment. J. Neurosci. Methods 203, 152156 (2012).
PubMed Google Scholar
Heldman, D. A. et al. Automated motion sensor quantification of gait and lower extremity Bradykinesia. Conf. Proc. IEEE Eng. Med Biol. Soc. 2012, 19561959 (2012).
PubMed Central Google Scholar
Phan, D., Horne, M., Pathirana, P. N. & Farzanehfar, P. Measurement of axial rigidity and postural instability using wearable sensors. Sensors (Basel) 18, 495 (2018).
Salarian, A. et al. Analyzing 180 turns using an inertial system reveals early signs of progress in Parkinsons Disease. Conf. Proc. IEEE Eng. Med Biol. Soc. 2009, 224227 (2009).
PubMed Central Google Scholar
Moore, S. T. et al. Autonomous identification of freezing of gait in Parkinsons disease from lower-body segmental accelerometry. J. Neuroeng. Rehabil. 10, 19 (2013).
PubMed PubMed Central Google Scholar
Mancini, M. et al. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. J. Neuroeng. Rehabil. 18, 1 (2021).
PubMed PubMed Central Google Scholar
Reches, T. et al. Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-Provoking test. Sensors (Basel) 20, 4474 (2020).
Tripoliti, E. E. et al. Automatic detection of freezing of gait events in patients with Parkinsons disease. Comput. Methods Prog. Biomed. 110, 1226 (2013).
Google Scholar
Zach, H. et al. Identifying freezing of gait in Parkinsons disease during freezing provoking tasks using waist-mounted accelerometry. Parkinsonism. Relat. Disord. 21, 13621366 (2015).
PubMed Google Scholar
Manson, A. et al. An ambulatory dyskinesia monitor. J. Neurol. Neurosurg. Psychiatry 68, 196201 (2000).
CAS PubMed PubMed Central Google Scholar
Pulliam, C. L. et al. Continuous assessment of levodopa response in Parkinsons disease using wearable motion sensors. IEEE Trans. Biomed. Eng. 65, 159164 (2018).
PubMed Google Scholar
Rodrguez-Molinero, A. et al. Estimating dyskinesia severity in Parkinsons disease by using a waist-worn sensor: concurrent validity study. Sci. Rep. 9, 13434 (2019).
Giovannoni, G., van Schalkwyk, J., Fritz, V. & Lees, A. Bradykinesia akinesia inco-ordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function. J. Neurol. Neurosurg. Psychiatry 67, 624629 (1999).
CAS PubMed PubMed Central Google Scholar
Allen, D. P. et al. On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinsons diseasequantification of bradykinesia using target tracking tasks. IEEE Trans. Neural Syst. Rehabilitation Eng. 15, 286294 (2007).
CAS Google Scholar
Espay, A. J. et al. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinsons disease. J. Rehabil. Res. Dev. 47, 573 (2010).
PubMed Google Scholar
Bachlin, M. et al. Wearable assistant for Parkinsons disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14, 436446 (2010).
PubMed Google Scholar
Lee, A. et al. Can google glassTM technology improve freezing of gait in parkinsonism? A pilot study. Disabil. Rehabil. Assist. Technol. 111. https://doi.org/10.1080/17483107.2020.1849433 (2020).
Rao, A. S. et al. Quantifying drug induced dyskinesia in Parkinsons disease patients using standardized videos. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 17691772. https://doi.org/10.1109/IEMBS.2008.4649520 (2008).
van Hilten, J. J., Middelkoop, H. A., Kerkhof, G. A. & Roos, R. A. A new approach in the assessment of motor activity in Parkinsons disease. J. Neurol. Neurosurg. Psychiatry 54, 976979 (1991).
PubMed PubMed Central Google Scholar
Burne, J. A., Hayes, M. W., Fung, V. S. C., Yiannikas, C. & Boljevac, D. The contribution of tremor studies to diagnosis of Parkinsonian and essential tremor: a statistical evaluation. J. Clin. Neurosci. 9, 237242 (2002).
CAS PubMed Google Scholar
Cole, B. T., Roy, S. H., Luca, C. J. D. & Nawab, S. H. Dynamic neural network detection of tremor and dyskinesia from wearable sensor data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 60626065. https://doi.org/10.1109/IEMBS.2010.5627618 (2010).
Tsipouras, M. G. et al. An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif. Intell. Med. 55, 127135 (2012).
PubMed Google Scholar
Papapetropoulos, S. et al. Objective quantification of neuromotor symptoms in Parkinsons disease: implementation of a portable, computerized measurement tool. Parkinsons Dis. 2010, (2010).
Yang, C.-C., Hsu, Y.-L., Shih, K.-S. & Lu, J.-M. Real-time gait cycle parameter recognition using a wearable accelerometry system. Sensors (Basel) 11, 73147326 (2011).
Google Scholar
Klucken, J. et al. Unbiased and mobile gait analysis detects motor impairment in Parkinsons disease. PLoS ONE 8, e56956 (2013).
Marcante, A. et al. Foot pressure wearable sensors for freezing of gait detection in Parkinsons disease. Sensors (Basel) 21, 128 (2020).
Mahadevan, N. et al. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. npj Digital Med. 3, 112 (2020).
Google Scholar
Heldman, D. A. et al. Telehealth management of Parkinsons disease using wearable Sensors: Exploratory Study. Digit Biomark. 1, 4351 (2017).
PubMed PubMed Central Google Scholar
Ferreira, J. J. et al. Quantitative home-based assessment of Parkinsons symptoms: the SENSE-PARK feasibility and usability study. BMC Neurol. 15, 89 (2015).
PubMed PubMed Central Google Scholar
Fisher, J. M., Hammerla, N. Y., Rochester, L., Andras, P. & Walker, R. W. Body-worn sensors in Parkinsons disease: evaluating their acceptability to patients. Telemed. J. E Health 22, 6369 (2016).
PubMed PubMed Central Google Scholar
Evers, L. J. et al. Real-life gait performance as a digital biomarker for motor fluctuations: the Parkinson@Home validation study. J. Med. Internet Res. 22, e19068 (2020).
Erb, M. K. et al. mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinsons disease. npj Digital Med. 3, 110 (2020).
Here is the original post:
Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms | npj Digital Medicine -...
- How machine learning and AI can be harnessed for mission-based lending - ImpactAlpha - January 27th, 2025 [January 27th, 2025]
- Machine learning meta-analysis identifies individual characteristics moderating cognitive intervention efficacy for anxiety and depression symptoms -... - January 27th, 2025 [January 27th, 2025]
- Using robotics to introduce AI and machine learning concepts into the elementary classroom - George Mason University - January 27th, 2025 [January 27th, 2025]
- Machine learning to identify environmental drivers of phytoplankton blooms in the Southern Baltic Sea - Nature.com - January 27th, 2025 [January 27th, 2025]
- Why Most Machine Learning Projects Fail to Reach Production and How to Beat the Odds - InfoQ.com - January 27th, 2025 [January 27th, 2025]
- Exploring the intersection of AI and climate physics: Machine learning's role in advancing climate science - Phys.org - January 27th, 2025 [January 27th, 2025]
- 5 Questions with Jonah Berger: Using Artificial Intelligence and Machine Learning in Litigation - Cornerstone Research - January 27th, 2025 [January 27th, 2025]
- Modernizing Patient Support: Harnessing Advanced Automation, Artificial Intelligence and Machine Learning to Improve Efficiency and Performance of... - January 27th, 2025 [January 27th, 2025]
- Param Popat Leads the Way in Transforming Machine Learning Systems - Tech Times - January 27th, 2025 [January 27th, 2025]
- Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods - Nature.com - January 27th, 2025 [January 27th, 2025]
- Machine learning is bringing back an infamous pseudoscience used to fuel racism - ZME Science - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning are Redefining Customer Experience Management - Customer Think - January 27th, 2025 [January 27th, 2025]
- Machine Learning Data Catalog Software Market Strategic Insights and Key Innovations: Leading Companies and... - WhaTech - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning Will Influence Fintech Frontend Development in 2025 - Benzinga - January 27th, 2025 [January 27th, 2025]
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]