Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific … – Nature.com
Magnetic multi-component moment tensor potential (mMTP)
The concept of magnetic multi-component Moment Tensor Potential (mMTP) presented in the current research is based on the previously developed non-magnetic MTP for multi-component systems41,42 and magnetic MTP for single-component systems35.
The mMTP potential is local, i.e., the energy of the atomistic system is a sum of energies of individual atoms:
$$begin{aligned} E = sum _{i=1}^{N_a}E_i, end{aligned}$$
(1)
where i stands for the individual atoms in an (N_a)-atom system. We note that any configuration includes lattice vectors ({{varvec{L}}} = {{{varvec{l}}}_1,{{varvec{l}}}_2,{{varvec{l}}}_3}), atomic positions ({{varvec{R}}} = {{{varvec{r}}}_1, ldots , {{varvec{r}}}_{N_a}}), types (Z = {z_1,ldots ,z_{N_{a}}}) (we also denote (N_{rm types}) by the total number of atomic types in the system), and magnetic moments (M = {m_1,ldots ,m_{N_a}}). The energy of the atom (E_i), in turn, has the form:
$$begin{aligned} E_i = sum _{alpha =1}^{alpha _{rm max}} xi _{alpha }B_{alpha }({mathfrak n}_i), end{aligned}$$
(2)
where ({{varvec{xi }}} = {xi _{alpha } }) are the linear parameters to be optimized and (B_alpha) are the so-called basis functions, which are contractions of the descriptors25 of atomistic environment ({mathfrak n}_i), yielding a scalar. The (alpha _text {max}) parameter can be changed to provide potentials with different amount of parameters35.
The descriptors are composed of the radial part, i.e., the scalar function depending on the interatomic distances and atomic magnetic moments, and the angular part, which is a tensor of rank (nu):
$$begin{aligned} M_{mu ,nu }({mathfrak n}_i)=sum _{j} f_{mu }(| {{varvec{r}}}_{ij}|,z_i,z_j,m_i,m_j)underbrace{{{varvec{r}}}_{ij}otimes ...otimes {{varvec{r}}}_{ij}}_nu text { times }, end{aligned}$$
(3)
where ({mathfrak n}_i) stands for the atomic environment, including all the atoms within the (R_text {cut}) distance (or less) from the central atom i, (mu) is the number of the radial function, (nu) is the rank of the angular part tensor, (|{{varvec{r}}}_{ij}|) is the distance between the atoms i and j, (z_i) and (z_j) are the atomic types, (m_i) and (m_j) are the magnetic moments of the atoms.
The radial functions are expanded in a basis of Chebyshev polynomials:
$$begin{aligned} f_{mu }(|r_{ij}|,z_i,z_j,m_i,m_j) = sum _{zeta =1}^{N_{phi }} sum _{beta =1}^{N_{psi }}sum _{gamma =1}^{N_{psi }}c_{mu ,z_i,z_j}^{zeta ,beta ,gamma } phi _{zeta }(|{varvec{r}}_{ij}|) psi _{beta }(m_i)psi _{gamma }(m_j) (R_{rm cut} - |{varvec{r}}_{ij}|)^2. end{aligned}$$
(4)
Here ({{varvec{c}}} = {c_{mu ,z_i,z_j}^{zeta ,beta ,gamma }}) are the radial parameters to be optimized, each of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)), (psi _{beta }(m_i)), (psi _{gamma }(m_i)) is a Chebyshev polynomial of order (zeta), (beta) and (gamma) correspondingly, taking values from (-1) to 1. The function (phi _{zeta }(|{varvec{r}}_{ij}|)) yields the dependency on the distance between the atoms i and j, while the functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) yield the dependency on the magnetic moments of the atoms i and j, correspondingly. The arguments of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)) are on the interval ((R_{rm min},R_{rm cut})), where (R_{rm min}) and (R_{rm cut}) are the minimum and maximum distance, correspondingly, between the interacting atoms. The functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) are of the same structure, which we explain for the case of the former one. The argument of the function (psi _{beta }(m_i)) is the magnetic moment of the atom i, taking the values on the ((-M_{rm max}^{z_i},M_{rm max}^{z_i})) interval. The value (M_{rm max}^{z_i}) itself depends on the type of atom (z_i), and is determined as the maximal absolute value of the magnetic moment for atom type (z_i) in the training set. Similar to the conventional MTP, the term ((R_{rm cut} - |{varvec{r}}_{ij}|)^2) provides smooth fading to 0 when approaching the (R_{rm cut}) distance, in accordance with the locality principle (1).
We note that magnetic degrees of freedom (m_i) from (4) are collinear, i.e., they can take negative or positive values as projection onto the Z axis (though the choice of the axis is arbitrary). This way, in comparison to non-magnetic atomistic systems with N atoms, in which the amount of degrees of freedom equals 4N (namely 3N for coordinates and N for types), for the description of magnetic systems additional N degrees of freedom are introduced, standing for the magnetic moment (m_i) of each atom. The amount of parameters entering the radial functions (Eq. 4) also increases in mMTP compared to the conventional MTP41,42. Namely, in MTP this number equals (N_{mu } cdot N_{phi } cdot N_{rm types}^2), while in mMTP it is (N_{mu } cdot N_{phi } cdot N_{rm types}^2 cdot N_{psi }^2). Thus, if we take (N_{psi } = 2) (which is used in the current research), the amount of the parameters entering the radial functions would be four times more in mMTP then in MTP.
We denote all the mMTP parameters by ({varvec{theta }}= {{varvec{xi }}, {varvec{c}} }) and the total energy (1) of the atomic system by (E=E({{varvec{theta }}})=E({{varvec{theta }}};M)=E({{varvec{theta }}};{{varvec{L}}},{{varvec{R}}},Z,M)).
The tensor (Eq. (4)) includes collinear magnetic moments in its functional form. However, it is not invariant with respect to the inversion of magnetic moments, i.e., (E({{varvec{theta }}};M) ne E({{varvec{theta }}};-M)), while both original and spin-inverted configurations should yield the same energy due to the arbitrary orientation of the projection axis, which we further call the magnetic symmetry.
We use data augmentation followed by explicit symmetrization with respect to magnetic moments to train a symmetric mMTP as we discuss below. Assume we have K configurations in the training set with DFT energies (E_k^{rm DFT}), forces ({varvec{f}}^{rm DFT}_{i,k}), and stresses (sigma ^{rm DFT}_{ab,k}) ((a,b=1,2,3)) calculated. We find the optimal parameters (bar{{{varvec{theta }}}}) (fit mMTP) by minimizing the objective function:
$$begin{aligned} &sum _{k=1}^{K} Biggl [ w_{rm e} Biggl | frac{E_k ({varvec{theta }}; M) + E_{k}({varvec{theta }}; -M)}{2} - E_{k}^{rm DFT}Biggr |^2 \&quad + w_{rm f} sum _{i=1}^{N_a} Biggl | frac{{varvec{f}}_{i,k}({varvec{theta }};M) + {varvec{f}}_{i,k}({varvec{theta }};-M)}{2} - {varvec{f}}^{rm DFT}_{i,k}Biggr |^2 \&quad +w_{rm s} sum _{a,b=1}^{3} Biggl | frac{sigma _{ab,k}({varvec{theta }};M)+sigma _{ab,k}({varvec{theta }};-M)}{2} -sigma ^{rm DFT}_{ab,k}Biggr |^2 Biggr ], end{aligned}$$
(5)
where (w_{rm e}), (w_{rm f}), and (w_{rm s}) are non-negative weights. By minimizing (5) we find such optimal parameters (bar{{{varvec{theta }}}}) that yield (E_k (bar{{varvec{theta }}}; M) approx E_k (bar{{varvec{theta }}}; -M)), (k = 1, ldots , K) (the same fact takes place for the mMTP forces and stresses), i.e., we symmetrize the training set to make mMTP learn the required symmetry from the data itselfthis is called data augmentation.
Next, we modify mMTP to make the energy used for the simulations (e.g., relaxation of configurations) to satisfy the exact symmetry:
$$begin{aligned} E^{rm symm}(bar{{{varvec{theta }}}};M) = dfrac{E(bar{{varvec{theta }}};M)+E(bar{{varvec{theta }}};-M)}{2}. end{aligned}$$
(6)
That is, we substitute the mMTP energy (1) into (6) and get a functional form which satisfies the exact identity (E^{rm symm}(bar{{{varvec{theta }}}};M) = E^{rm symm}(bar{{{varvec{theta }}}};-M)) for any configuration. We also note that (E (bar{{varvec{theta }}}) approx E^{rm symm}(bar{{{varvec{theta }}}})).
We use the cDFT approach with hard constraints(i.e., Lagrange multiplier) as proposed by Gonze et al. in Ref.19. One way to formulate it is to first note that in a single-point DFT calculation we minimize the Kohn-Sham total energy functional (E[rho ; {{varvec{R}}}]) with respect to the electronic density (rho =rho (r)) (here (rho) combines the spin-up and spin-down electron densities), keeping the nuclei position ({{varvec{R}}}) fixed. In other words, we solve the following minimization problem:
$$begin{aligned} E_{rm DFT}({{varvec{R}}}) = min _rho E[rho ; {{varvec{R}}}], end{aligned}$$
and from the optimal (rho ^* = mathrm{arg,min} E[rho ; {{varvec{R}}}]) we can, e.g., find magnetization (m(r) = rho ^*_+ - rho ^*_-), where the subscripts denote the spin-up ((+)) and spin-down () densities. The magnetic moment of the ith atom can be found by integrating m(r) over some (depending on the partitioning scheme) region around the atom:
$$begin{aligned} m_i = int _{Omega _i} m(r) textrm{d}r. end{aligned}$$
(7)
Since the minimizer (rho ^*) depends on ({{varvec{R}}}), (m_i) are also the functions of ({{varvec{R}}}).
According to the cDFT approach19, we now formulate the problem of minimizing (E[rho ; {{varvec{R}}}]) in which not only ({{varvec{R}}}),but also (rho) is allowed to change only subject to constraints (7):
$$begin{aligned} begin{array}{rcl} E_{rm cDFT}(rho, {{varvec{R}}}, M) =&{} min _rho &{} E[rho ; {{varvec{R}}}] \ &{} text {subject to} &{} m_i = int _{Omega _i} big (rho _{+}(r)-rho _-(r)big ) textrm{d}r. end{array} end{aligned}$$
The algorithmic details of how this minimization problem is solved, and how the energy derivatives (forces, stresses, torques) are computed, are described in detail in Ref.19.
We used the ABINIT code43,44 for DFT (and cDFT recently developed and described in Ref.19) calculations with (6times 6times 6) k-point mesh and cutoff energy of 25 Hartree (about 680 eV). We utilized the PAW PBE method with the generalized gradient approximation. We applied constraints on magnetic moments of all atoms during cDFT calculations.
We fitted an ensemble of five mMTPs with 415 parameters in order to quantify the uncertainty of mMTPs predictions. For each mMTP we took (R_{rm min} = 2.1 ~) , (R_{rm cut} = 4.5 ~), (M_{rm max}^{rm Al} = 0.1 ~mu _B), and (M_{rm max}^{rm Fe} = 3.0 ~mu _B). The weights in the objective function (5) were (w_{rm e} = 1), (w_{rm f} = 0.01) (^2), and (w_{rm s} = 0.001).
See the article here:
Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific ... - Nature.com
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VERU recovery - July 2025 Intraday Action & AI Forecasted Entry/Exit Points - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VCI Global Limited recovery - Market Rally & Expert-Curated Trade Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for AutoNation Inc. - Weekly Trend Summary & Weekly Breakout Watchlists - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for PLXS - Options Play & Fast Gain Stock Trading Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Valens Semiconductor Ltd. recovery - July 2025 Action & Free Growth Oriented Trading Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Improve cost visibility of Machine Learning workloads on Amazon EKS with AWS Split Cost Allocation Data - Amazon Web Services - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast LFT.PRA recovery - Weekly Trade Recap & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast TEAM recovery - 2025 Pullback Review & Free Weekly Chart Analysis and Trade Guides - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for MSBIP - Weekly Profit Analysis & AI Powered Market Entry Strategies - Newser - September 5th, 2025 [September 5th, 2025]
- Revolutionizing Antibody Discovery with Machine Learning - BIOENGINEER.ORG - September 5th, 2025 [September 5th, 2025]
- The good and bad of machine learning | Letters - The Guardian - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - AOL.com - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Dogwood Therapeutics Inc. - July 2025 Breakouts & Weekly Setup with High ROI Potential - Newser - September 3rd, 2025 [September 3rd, 2025]
- Phenotyping valvular heart diseases using the lens of unsupervised machine learning: a scoping review - Nature - September 3rd, 2025 [September 3rd, 2025]
- Students use machine learning to track and protect whale populations - Technology Org - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Triller Group Inc. Equity Warrant - Gap Up & Weekly High Conviction Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for DallasNews Corporation - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for System1 Inc. - Weekly Gains Summary & Risk Adjusted Swing Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Unlocking the impossible without compromising on creative control: iZotope Ozone 12 adds new machine learning modules and a more musician-friendly AI... - September 3rd, 2025 [September 3rd, 2025]
- What machine learning models say about SLND.WS - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Chemed Corporation - Weekly Stock Recap & Growth Focused Entry Reports - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for TAP.A - Earnings Growth Report & Entry Point Confirmation Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Bridging known and unknown dynamics by transformer-based machine-learning inference from sparse observations - Nature - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Inseego Corp. - July 2025 Retail & Technical Confirmation Trade Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Can machine learning forecast Aditxt Inc. recovery - July 2025 Update & Expert Curated Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - Business Insider - September 1st, 2025 [September 1st, 2025]
- Machine learning climbs the Jacobs Ladder of optoelectronic properties - Nature - September 1st, 2025 [September 1st, 2025]
- Predicting factors associated with anxiety by patients undergoing treatment for infectious diseases using a random-forest machine learning approach -... - September 1st, 2025 [September 1st, 2025]
- Hideo Kojima used "an AI machine learning rig" to painstakingly download his celebrity friends to Death Stranding 2, but he wasn't happy... - September 1st, 2025 [September 1st, 2025]
- Fibro predict a machine learning risk score for advanced liver fibrosis in the general population using Israeli electronic health records - Nature - September 1st, 2025 [September 1st, 2025]
- Machine learning for preventing stillbirths: is it possible to transform data into life-saving insights? - BMC Pregnancy and Childbirth - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Kura Sushi USA Inc. recovery - 2025 Fundamental Recap & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for China Liberal Education Holdings Limited - Weekly Profit Recap & Weekly Breakout Watchlists - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tyson Foods Inc. recovery - 2025 Trade Ideas & Smart Swing Trading Techniques - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast GLBZ recovery - July 2025 Movers & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Sypris Solutions Inc. - Market Performance Recap & Real-Time Volume Trigger Notifications - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Astria Therapeutics Inc. - July 2025 News Drivers & Real-Time Buy Signal Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast CRTO recovery - July 2025 Analyst Calls & Growth Focused Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - Exit Point & Pattern Based Trade Signal System - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about OFIX - Bond Market & Long-Term Safe Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Beneficient recovery - Weekly Trade Recap & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast BTBDW recovery - 2025 Geopolitical Influence & Weekly High Momentum Picks - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tri Pointe Homes Inc. recovery - July 2025 WrapUp & Free Long-Term Investment Growth Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast TeraWulf Inc. recovery - Market Movement Recap & Community Supported Trade Ideas - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for Alset Inc. - 2025 Technical Patterns & Precise Buy Zone Identification - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - 2025 Bull vs Bear & Smart Allocation Stock Reports - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Token Cat Limited Depositary Receipt recovery - 2025 Price Action Summary & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for BT Brands Inc. - Market Performance Recap & Verified Technical Trade Signals - Newser - September 1st, 2025 [September 1st, 2025]
- 7 Beginner Machine Learning Projects To Complete This Weekend - KDnuggets - August 29th, 2025 [August 29th, 2025]
- Machine learning approaches for predicting the construction time of drill-and-blast tunnels - Nature - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for KKR.PRD - July 2025 Closing Moves & Technical Pattern Recognition Alerts - Newser - August 29th, 2025 [August 29th, 2025]
- Leveraging data analytics to revolutionize cybersecurity with machine learning and deep learning - Nature - August 29th, 2025 [August 29th, 2025]
- Can machine learning forecast Yext Inc. recovery - Earnings Performance Report & Accurate Buy Signal Notifications - Newser - August 29th, 2025 [August 29th, 2025]