Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific … – Nature.com
Magnetic multi-component moment tensor potential (mMTP)
The concept of magnetic multi-component Moment Tensor Potential (mMTP) presented in the current research is based on the previously developed non-magnetic MTP for multi-component systems41,42 and magnetic MTP for single-component systems35.
The mMTP potential is local, i.e., the energy of the atomistic system is a sum of energies of individual atoms:
$$begin{aligned} E = sum _{i=1}^{N_a}E_i, end{aligned}$$
(1)
where i stands for the individual atoms in an (N_a)-atom system. We note that any configuration includes lattice vectors ({{varvec{L}}} = {{{varvec{l}}}_1,{{varvec{l}}}_2,{{varvec{l}}}_3}), atomic positions ({{varvec{R}}} = {{{varvec{r}}}_1, ldots , {{varvec{r}}}_{N_a}}), types (Z = {z_1,ldots ,z_{N_{a}}}) (we also denote (N_{rm types}) by the total number of atomic types in the system), and magnetic moments (M = {m_1,ldots ,m_{N_a}}). The energy of the atom (E_i), in turn, has the form:
$$begin{aligned} E_i = sum _{alpha =1}^{alpha _{rm max}} xi _{alpha }B_{alpha }({mathfrak n}_i), end{aligned}$$
(2)
where ({{varvec{xi }}} = {xi _{alpha } }) are the linear parameters to be optimized and (B_alpha) are the so-called basis functions, which are contractions of the descriptors25 of atomistic environment ({mathfrak n}_i), yielding a scalar. The (alpha _text {max}) parameter can be changed to provide potentials with different amount of parameters35.
The descriptors are composed of the radial part, i.e., the scalar function depending on the interatomic distances and atomic magnetic moments, and the angular part, which is a tensor of rank (nu):
$$begin{aligned} M_{mu ,nu }({mathfrak n}_i)=sum _{j} f_{mu }(| {{varvec{r}}}_{ij}|,z_i,z_j,m_i,m_j)underbrace{{{varvec{r}}}_{ij}otimes ...otimes {{varvec{r}}}_{ij}}_nu text { times }, end{aligned}$$
(3)
where ({mathfrak n}_i) stands for the atomic environment, including all the atoms within the (R_text {cut}) distance (or less) from the central atom i, (mu) is the number of the radial function, (nu) is the rank of the angular part tensor, (|{{varvec{r}}}_{ij}|) is the distance between the atoms i and j, (z_i) and (z_j) are the atomic types, (m_i) and (m_j) are the magnetic moments of the atoms.
The radial functions are expanded in a basis of Chebyshev polynomials:
$$begin{aligned} f_{mu }(|r_{ij}|,z_i,z_j,m_i,m_j) = sum _{zeta =1}^{N_{phi }} sum _{beta =1}^{N_{psi }}sum _{gamma =1}^{N_{psi }}c_{mu ,z_i,z_j}^{zeta ,beta ,gamma } phi _{zeta }(|{varvec{r}}_{ij}|) psi _{beta }(m_i)psi _{gamma }(m_j) (R_{rm cut} - |{varvec{r}}_{ij}|)^2. end{aligned}$$
(4)
Here ({{varvec{c}}} = {c_{mu ,z_i,z_j}^{zeta ,beta ,gamma }}) are the radial parameters to be optimized, each of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)), (psi _{beta }(m_i)), (psi _{gamma }(m_i)) is a Chebyshev polynomial of order (zeta), (beta) and (gamma) correspondingly, taking values from (-1) to 1. The function (phi _{zeta }(|{varvec{r}}_{ij}|)) yields the dependency on the distance between the atoms i and j, while the functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) yield the dependency on the magnetic moments of the atoms i and j, correspondingly. The arguments of the functions (phi _{zeta }(|{varvec{r}}_{ij}|)) are on the interval ((R_{rm min},R_{rm cut})), where (R_{rm min}) and (R_{rm cut}) are the minimum and maximum distance, correspondingly, between the interacting atoms. The functions (psi _{beta }(m_i)) and (psi _{gamma }(m_j)) are of the same structure, which we explain for the case of the former one. The argument of the function (psi _{beta }(m_i)) is the magnetic moment of the atom i, taking the values on the ((-M_{rm max}^{z_i},M_{rm max}^{z_i})) interval. The value (M_{rm max}^{z_i}) itself depends on the type of atom (z_i), and is determined as the maximal absolute value of the magnetic moment for atom type (z_i) in the training set. Similar to the conventional MTP, the term ((R_{rm cut} - |{varvec{r}}_{ij}|)^2) provides smooth fading to 0 when approaching the (R_{rm cut}) distance, in accordance with the locality principle (1).
We note that magnetic degrees of freedom (m_i) from (4) are collinear, i.e., they can take negative or positive values as projection onto the Z axis (though the choice of the axis is arbitrary). This way, in comparison to non-magnetic atomistic systems with N atoms, in which the amount of degrees of freedom equals 4N (namely 3N for coordinates and N for types), for the description of magnetic systems additional N degrees of freedom are introduced, standing for the magnetic moment (m_i) of each atom. The amount of parameters entering the radial functions (Eq. 4) also increases in mMTP compared to the conventional MTP41,42. Namely, in MTP this number equals (N_{mu } cdot N_{phi } cdot N_{rm types}^2), while in mMTP it is (N_{mu } cdot N_{phi } cdot N_{rm types}^2 cdot N_{psi }^2). Thus, if we take (N_{psi } = 2) (which is used in the current research), the amount of the parameters entering the radial functions would be four times more in mMTP then in MTP.
We denote all the mMTP parameters by ({varvec{theta }}= {{varvec{xi }}, {varvec{c}} }) and the total energy (1) of the atomic system by (E=E({{varvec{theta }}})=E({{varvec{theta }}};M)=E({{varvec{theta }}};{{varvec{L}}},{{varvec{R}}},Z,M)).
The tensor (Eq. (4)) includes collinear magnetic moments in its functional form. However, it is not invariant with respect to the inversion of magnetic moments, i.e., (E({{varvec{theta }}};M) ne E({{varvec{theta }}};-M)), while both original and spin-inverted configurations should yield the same energy due to the arbitrary orientation of the projection axis, which we further call the magnetic symmetry.
We use data augmentation followed by explicit symmetrization with respect to magnetic moments to train a symmetric mMTP as we discuss below. Assume we have K configurations in the training set with DFT energies (E_k^{rm DFT}), forces ({varvec{f}}^{rm DFT}_{i,k}), and stresses (sigma ^{rm DFT}_{ab,k}) ((a,b=1,2,3)) calculated. We find the optimal parameters (bar{{{varvec{theta }}}}) (fit mMTP) by minimizing the objective function:
$$begin{aligned} &sum _{k=1}^{K} Biggl [ w_{rm e} Biggl | frac{E_k ({varvec{theta }}; M) + E_{k}({varvec{theta }}; -M)}{2} - E_{k}^{rm DFT}Biggr |^2 \&quad + w_{rm f} sum _{i=1}^{N_a} Biggl | frac{{varvec{f}}_{i,k}({varvec{theta }};M) + {varvec{f}}_{i,k}({varvec{theta }};-M)}{2} - {varvec{f}}^{rm DFT}_{i,k}Biggr |^2 \&quad +w_{rm s} sum _{a,b=1}^{3} Biggl | frac{sigma _{ab,k}({varvec{theta }};M)+sigma _{ab,k}({varvec{theta }};-M)}{2} -sigma ^{rm DFT}_{ab,k}Biggr |^2 Biggr ], end{aligned}$$
(5)
where (w_{rm e}), (w_{rm f}), and (w_{rm s}) are non-negative weights. By minimizing (5) we find such optimal parameters (bar{{{varvec{theta }}}}) that yield (E_k (bar{{varvec{theta }}}; M) approx E_k (bar{{varvec{theta }}}; -M)), (k = 1, ldots , K) (the same fact takes place for the mMTP forces and stresses), i.e., we symmetrize the training set to make mMTP learn the required symmetry from the data itselfthis is called data augmentation.
Next, we modify mMTP to make the energy used for the simulations (e.g., relaxation of configurations) to satisfy the exact symmetry:
$$begin{aligned} E^{rm symm}(bar{{{varvec{theta }}}};M) = dfrac{E(bar{{varvec{theta }}};M)+E(bar{{varvec{theta }}};-M)}{2}. end{aligned}$$
(6)
That is, we substitute the mMTP energy (1) into (6) and get a functional form which satisfies the exact identity (E^{rm symm}(bar{{{varvec{theta }}}};M) = E^{rm symm}(bar{{{varvec{theta }}}};-M)) for any configuration. We also note that (E (bar{{varvec{theta }}}) approx E^{rm symm}(bar{{{varvec{theta }}}})).
We use the cDFT approach with hard constraints(i.e., Lagrange multiplier) as proposed by Gonze et al. in Ref.19. One way to formulate it is to first note that in a single-point DFT calculation we minimize the Kohn-Sham total energy functional (E[rho ; {{varvec{R}}}]) with respect to the electronic density (rho =rho (r)) (here (rho) combines the spin-up and spin-down electron densities), keeping the nuclei position ({{varvec{R}}}) fixed. In other words, we solve the following minimization problem:
$$begin{aligned} E_{rm DFT}({{varvec{R}}}) = min _rho E[rho ; {{varvec{R}}}], end{aligned}$$
and from the optimal (rho ^* = mathrm{arg,min} E[rho ; {{varvec{R}}}]) we can, e.g., find magnetization (m(r) = rho ^*_+ - rho ^*_-), where the subscripts denote the spin-up ((+)) and spin-down () densities. The magnetic moment of the ith atom can be found by integrating m(r) over some (depending on the partitioning scheme) region around the atom:
$$begin{aligned} m_i = int _{Omega _i} m(r) textrm{d}r. end{aligned}$$
(7)
Since the minimizer (rho ^*) depends on ({{varvec{R}}}), (m_i) are also the functions of ({{varvec{R}}}).
According to the cDFT approach19, we now formulate the problem of minimizing (E[rho ; {{varvec{R}}}]) in which not only ({{varvec{R}}}),but also (rho) is allowed to change only subject to constraints (7):
$$begin{aligned} begin{array}{rcl} E_{rm cDFT}(rho, {{varvec{R}}}, M) =&{} min _rho &{} E[rho ; {{varvec{R}}}] \ &{} text {subject to} &{} m_i = int _{Omega _i} big (rho _{+}(r)-rho _-(r)big ) textrm{d}r. end{array} end{aligned}$$
The algorithmic details of how this minimization problem is solved, and how the energy derivatives (forces, stresses, torques) are computed, are described in detail in Ref.19.
We used the ABINIT code43,44 for DFT (and cDFT recently developed and described in Ref.19) calculations with (6times 6times 6) k-point mesh and cutoff energy of 25 Hartree (about 680 eV). We utilized the PAW PBE method with the generalized gradient approximation. We applied constraints on magnetic moments of all atoms during cDFT calculations.
We fitted an ensemble of five mMTPs with 415 parameters in order to quantify the uncertainty of mMTPs predictions. For each mMTP we took (R_{rm min} = 2.1 ~) , (R_{rm cut} = 4.5 ~), (M_{rm max}^{rm Al} = 0.1 ~mu _B), and (M_{rm max}^{rm Fe} = 3.0 ~mu _B). The weights in the objective function (5) were (w_{rm e} = 1), (w_{rm f} = 0.01) (^2), and (w_{rm s} = 0.001).
See the article here:
Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of FeAl | Scientific ... - Nature.com
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]