Dense reinforcement learning for safety validation of autonomous vehicles – Nature.com

Kalra, N. & Paddock, S. M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. A 94, 182193 (2016).

Google Scholar

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436444 (2015).

Article ADS CAS PubMed Google Scholar

10 million self-driving cars will be on the road by 2020. Insider https://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6 (2016).

Nissan promises self-driving cars by 2020. Wired https://www.wired.com/2013/08/nissan-autonomous-drive/ (2014).

Teslas self-driving vehicles are not far off. Insider https://www.businessinsider.com/elon-musk-on-teslas-autonomous-cars-2015-9 (2015).

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (Society of Automotive Engineers, 2021); https://www.sae.org/standards/content/j3016_202104/.

2021 Disengagement Reports (California Department of Motor Vehicles, 2022); https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/.

Paz, D., Lai, P. J., Chan, N., Jiang, Y. & Christensen, H. I. Autonomous vehicle benchmarking using unbiased metrics. In IEEE International Conference on Intelligent Robots and Systems 62236228 (IEEE, 2020).

Favar, F., Eurich, S. & Nader, N. Autonomous vehicles disengagements: trends, triggers, and regulatory limitations. Accid. Anal. Prev. 110, 136148 (2018).

Article PubMed Google Scholar

Riedmaier, S., Ponn, T., Ludwig, D., Schick, B. & Diermeyer, F. Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 8745687477 (2020).

Article Google Scholar

Nalic, D. et al. Scenario based testing of automated driving systems: a literature survey. In Proc. of the FISITA Web Congress 110 (Fisita, 2020).

Feng, S., Feng, Y., Yu, C., Zhang, Y. & Liu, H. X. Testing scenario library generation for connected and automated vehicles, part I: methodology. IEEE Trans. Intell. Transp. Syst. 22, 15731582 (2020).

Article Google Scholar

Feng, S. et al. Testing scenario library generation for connected and automated vehicles, part II: case studies. IEEE Trans. Intell. Transp. Syst. 22, 56355647 (2020).

Article Google Scholar

Feng, S., Yan, X., Sun, H., Feng, Y. & Liu, H. X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nat. Commun. 12, 748 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Sinha, A., OKelly, M., Tedrake, R. & Duchi, J. C. Neural bridge sampling for evaluating safety-critical autonomous systems. Adv. Neural Inf. Process. Syst. 33, 64026416 (2020).

Google Scholar

Li, L. et al. Parallel testing of vehicle intelligence via virtual-real interaction. Sci. Robot. 4, eaaw4106 (2019).

Article PubMed Google Scholar

Zhao, D. et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Trans. Intell. Transp. Syst. 18, 595607 (2016).

Article PubMed PubMed Central Google Scholar

Donoho, D. L. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lecture 1, 32 (2000).

Google Scholar

Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504507 (2006).

Article ADS MathSciNet CAS PubMed MATH Google Scholar

Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354359 (2017).

Article ADS CAS PubMed Google Scholar

Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207212 (2021).

Article ADS CAS PubMed Google Scholar

Cummings, M. L. Rethinking the maturity of artificial intelligence in safety-critical settings. AI Mag. 42, 615 (2021).

Google Scholar

Kato, S. et al. Autoware on board: enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems 287296 (IEEE, 2018).

Feng, S. et al. Safety assessment of highly automated driving systems in test tracks: a new framework. Accid. Anal. Prev. 144, 105664 (2020).

Article PubMed Google Scholar

Lopez, P. et al. Microscopic traffic simulation using SUMO. In International Conference on Intelligent Transportation Systems 25752582 (IEEE, 2018).

Arun, A., Haque, M. M., Bhaskar, A., Washington, S. & Sayed, T. A systematic mapping review of surrogate safety assessment using traffic conflict techniques. Accid. Anal. Prev. 153, 106016 (2021).

Article PubMed Google Scholar

Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

Koren, M., Alsaif, S., Lee, R. & Kochenderfer, M. J. Adaptive stress testing for autonomous vehicles. In IEEE Intelligent Vehicles Symposium (IV) 17 (IEEE, 2018).

Sun, H., Feng, S., Yan, X. & Liu, H. X. Corner case generation and analysis for safety assessment of autonomous vehicles. Transport. Res. Rec. 2675, 587600 (2021).

Article Google Scholar

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

Owen, A. B. Monte Carlo theory, methods and examples. Art Owen https://artowen.su.domains/mc/ (2013).

Krajewski, R., Moers, T., Bock, J., Vater, L. & Eckstein, L. September. The round dataset: a drone dataset of road user trajectories at roundabouts in Germany. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems 16 (IEEE, 2020).

Nowakowski, C., Shladover, S. E., Chan, C. Y. & Tan, H. S. Development of California regulations to govern testing and operation of automated driving systems. Transport. Res. Rec. 2489, 137144 (2015).

Article Google Scholar

Sauerbier, J., Bock, J., Weber, H. & Eckstein, L. Definition of scenarios for safety validation of automated driving functions. ATZ Worldwide 121, 4245 (2019).

Article Google Scholar

Pek, C., Manzinger, S., Koschi, M. & Althoff, M. Using online verification to prevent autonomous vehicles from causing accidents. Nat. Mach. Intell. 2, 518528 (2020).

Article Google Scholar

Seshia, S. A., Sadigh, D. & Sastry, S. S. Toward verified artificial intelligence. Commun. ACM 65, 4655 (2022).

Article Google Scholar

Wing, J. M. A specifiers introduction to formal methods. IEEE Comput. 23, 824 (1990).

Article Google Scholar

Li, A., Sun, L., Zhan, W., Tomizuka, M. & Chen, M. Prediction-based reachability for collision avoidance in autonomous driving. In 2021 IEEE International Conference on Robotics and Automation 79087914 (IEEE, 2021).

Automated Vehicle Safety Consortium AVSC Best Practice for Metrics and Methods for Assessing Safety Performance of Automated Driving Systems (ADS) (SAE Industry Technologies Consortia, 2021).

Au, S. K. & Beck, J. L. Important sampling in high dimensions. Struct. Saf. 25, 139163 (2003).

Article Google Scholar

Silver, D., Singh, S., Precup, D. & Sutton, R. S. Reward is enough. Artif. Intell. 299, 113 (2021).

Article MathSciNet MATH Google Scholar

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529533 (2015).

Article ADS CAS PubMed Google Scholar

Weng, B., Rao, S. J., Deosthale, E., Schnelle, S. & Barickman, F. Model predictive instantaneous safety metric for evaluation of automated driving systems. In IEEE Intelligent Vehicles Symposium (IV) 18991906 (IEEE, 2020).

Junietz, P., Bonakdar, F., Klamann, B. & Winner, H. Criticality metric for the safety validation of automated driving using model predictive trajectory optimization. In International Conference on Intelligent Transportation Systems 6065 (IEEE, 2018).

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition 47004708 (IEEE, 2017).

Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In International Conference on Machine Learning 4148 (ICML, 2009).

Yan, X., Feng, S., Sun, H., & Liu, H. X. Distributionally consistent simulation of naturalistic driving environment for autonomous vehicle testing. Preprint at https://arxiv.org/abs/2101.02828 (2021).

Bezzina, D. & Sayer, J. Safety Pilot Model Deployment: Test Conductor Team Report DOT HS 812 171 (National Highway Traffic Safety Administration, 2014).

Sayer, J. et al. Integrated Vehicle-based Safety Systems Field Operational Test: Final Program Report FHWA-JPO-11-150; UMTRI-2010-36 (Joint Program Office for Intelligent Transportation Systems, 2011).

Treiber, M., Hennecke, A. & Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000).

Article ADS CAS MATH Google Scholar

Kesting, A., Treiber, M. & Helbing, D. General lane-changing model MOBIL for car-following models. Transp. Res. Rec. 1999, 8694 (2007).

Article Google Scholar

Liang, E. et al. RLlib: abstractions for distributed reinforcement learning. In International Conference on Machine Learning 30533062 (ICML, 2018).

Chang A. X. et al. ShapeNet: an information-rich 3D model repository. Preprint at https://arxiv.org/abs/1512.03012 (2015).

Darweesh, H. et al. Open source integrated planner for autonomous navigation in highly dynamic environments. J. Robot. Mechatron. 29, 668684 (2017).

Article Google Scholar

View original post here:
Dense reinforcement learning for safety validation of autonomous vehicles - Nature.com

Related Posts

Comments are closed.