Development of predictive models for lymphedema by using blood … – Nature.com

Rockson, S. G. Lymphedema. Am. J. Med. 110, 288295 (2001).

Article CAS PubMed Google Scholar

Szuba, A. & Rockson, S. G. Lymphedema: Classification, diagnosis and therapy. Vasc. Med. 3, 145156. https://doi.org/10.1177/1358836x9800300209 (1998).

Article CAS PubMed Google Scholar

Fu, M. R. & Rosedale, M. Breast cancer survivors experiences of lymphedema-related symptoms. J. Pain Symptom Manag. 38, 849859 (2009).

Article Google Scholar

Jager, G., Doller, W. & Roth, R. Quality-of-life and body image impairments in patients with lymphedema. Lymphology 39, 193200 (2006).

CAS PubMed Google Scholar

Executive Committee. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the International Society of Lymphology. Lymphology 49, 170184 (2016).

Google Scholar

Kilgore, L. J. et al. Reducing breast cancer-related lymphedema (BCRL) through prospective surveillance monitoring using bioimpedance spectroscopy (BIS) and patient directed self-interventions. Ann. Surg. Oncol. 25, 29482952 (2018).

Article PubMed Google Scholar

Kaufman, D. I., Shah, C., Vicini, F. A. & Rizzi, M. Utilization of bioimpedance spectroscopy in the prevention of chronic breast cancer-related lymphedema. Breast Cancer Res. Treat. 166, 809815 (2017).

Article CAS PubMed PubMed Central Google Scholar

Erdogan Iyigun, Z. et al. The role of elastography in diagnosis and staging of breast cancer-related lymphedema. Lymphat. Res. Biol. 17, 334339 (2019).

Article PubMed Google Scholar

Armer, J. M. & Stewart, B. R. A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphat. Res. Biol. 3, 208217 (2005).

Article PubMed Google Scholar

Wei, X. et al. Developing and validating a prediction model for lymphedema detection in breast cancer survivors. Eur. J. Oncol. Nurs. 54, 102023 (2021).

Article PubMed Google Scholar

Fu, M. R. et al. Machine learning for detection of lymphedema among breast cancer survivors. mHealth 4, 1717 (2018).

Article CAS PubMed PubMed Central Google Scholar

Armer, J. M., Radina, M. E., Porock, D. & Culbertson, S. D. Predicting breast cancer-related lymphedema using self-reported symptoms. Nurs. Res. 52, 370379 (2003).

Article PubMed Google Scholar

Wang, L. et al. A scoring system to predict arm lymphedema risk for individual Chinese breast cancer patients. Breast Care 11, 5256 (2016).

Article PubMed PubMed Central Google Scholar

Penn, I. W. et al. Risk factors and prediction model for persistent breast-cancer-related lymphedema: A 5-year cohort study. Support. Care Cancer 27, 9911000 (2019).

Article PubMed Google Scholar

Martnez-Jaimez, P. et al. Breast cancer-related lymphoedema: Risk factors and prediction model. J. Adv. Nurs. 78, 765775 (2022).

Article PubMed Google Scholar

Nguyen, T. T., Hoskin, T. L., Habermann, E. B., Cheville, A. L. & Boughey, J. C. Breast cancer-related lymphedema risk is related to multidisciplinary treatment and not surgery alone: Results from a large cohort study. Ann. Surg. Oncol. 24, 29722980 (2017).

Article PubMed PubMed Central Google Scholar

Fu, M. R. et al. Symptom report in detecting breast cancer-related lymphedema. Breast Cancer Targets Ther. https://doi.org/10.2147/BCTT.S87854 (2015).

Article Google Scholar

Fu, M. R. Breast cancer-related lymphedema: Symptoms, diagnosis, risk reduction, and management. World J. Clin. Oncol. 5, 241 (2014).

Article PubMed PubMed Central Google Scholar

Breiman, L. Random forests. Mach. Learn. 45, 532 (2001).

Article MATH Google Scholar

Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 11891232 (2001).

Article MathSciNet MATH Google Scholar

R Core Team. R: A language and environment for statistical computing (2022).

RStudio Team. RStudio: Integrated development environment for R (2022).

Schauberger, P. & Walker, A. openxlsx: Read, write and edit xlsx files (2021).

Grosjean, P. SciViews::R (2022).

Kuhn, M. caret: Classification and regression training. Astrophys. Source Code Libr. ascl--1505 (2021).

Svetnik, V. et al. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 19471958 (2003).

Article CAS PubMed Google Scholar

Chen, T. et al. xgboost: Extreme gradient boosting (2022).

Kuhn, M. & Quinlan, R. C50: C5.0 Decision trees and rule-based models (2022).

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

Book MATH Google Scholar

Chang, W. et al. shiny: Web application framework for R (2021).

Bengio, Y. & Grandvalet, Y. No unbiased estimator of the variance of K-fold cross-validation Yoshua. J. Mach. Learn. Res. 5, 10891105 (2004).

MATH Google Scholar

Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 2936 (1982).

Article CAS PubMed Google Scholar

Dominick, S. A., Madlensky, L., Natarajan, L. & Pierce, J. P. Risk factors associated with breast cancer-related lymphedema in the WHEL Study. J. Cancer Surviv. 7, 115123 (2013).

Article PubMed Google Scholar

Kwan, M. L. et al. Risk factors for lymphedema in a prospective breast cancer survivorship study: The pathways study. Arch. Surg. 145, 10551063 (2010).

Article PubMed PubMed Central Google Scholar

Paskett, E. D., Naughton, M. J., McCoy, T. P., Case, L. D. & Abbott, J. M. The epidemiology of arm and hand swelling in premenopausal breast cancer survivors. Cancer Epidemiol. Biomark. Prev. 16, 775782 (2007).

Article Google Scholar

Mathea, M., Klingspohn, W. & Baumann, K. Chemoinformatic classification methods and their applicability domain. Mol. Inform. 35, 160180 (2016).

Article CAS PubMed Google Scholar

Roy, K., Kar, S. & Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst. 145, 2229 (2015).

Article CAS Google Scholar

Trinh, X. et al. Curation of datasets, assessment of their quality and completeness, and nanoSAR classification model development for metallic nanoparticles. Environ. Sci. Nano 5, 19021910 (2018).

Article CAS Google Scholar

Poliar, P. G. & Straar, M. Zupan. B. openTSNE a Modul. Python Libr. t-SNE Dimens. Reduct. Embed. bioRxiv, 731877 (2019).

Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16, 243245 (2019).

Article CAS PubMed PubMed Central Google Scholar

Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 32213245 (2014).

MathSciNet MATH Google Scholar

Originally posted here:
Development of predictive models for lymphedema by using blood ... - Nature.com

Related Posts

Comments are closed.