Fresh4Cast leader argues for the crucial role of machine learning in moving the industry forward – Produce Business UK
Automation is touching every industry; you cant survive in the 21st century economy without the data and the insights that come from technologies like artificial intelligence and machine learning. The food automation market, for example, isexpected to reach $29.4 billion by 2027.
Within the food space is produce and agriculture, and these are sub-spaces that havent seen quite as much advancement and adoption. Thats changing now thanks to companies likeFresh4cast, a company that uses AI forecasting to help growers and distributors improve productivity, increase margins and reduce waste. Its a solution that includes data sets build from historical, as well as trade statistics and weather, and a virtual assistant designed to automate tasks.
At the London Produce Show and Conference, we will be welcoming Fresh4casts COOMichele DallOlio.
Michele has based his career on the synergy between innovation and fresh produce. Starting with a degree in Agribusiness and a master in Management and Marketing, he explored the complexity of fresh produce data working as Head of Research for a leading Italian consultancy. He then moved to London and started a new journey withFresh4castwhere he is now the COO.
Michele spoke to us about how greater insights can help growers and distributorsDL benefit from increased insights, how that can lead to less food waste, and what hell be talking about at the London Produce Show.
Michele DallOlioCOOFresh4cast
Q: Lets kick this off by giving a little bit of an overview of yourself and about the Fresh4cast and what you do.
A: Im from Italy, I moved to London five years ago. I have always been working and studying in the fresh produce sector, from high school until now. In my career back in Italy, I was working with a lot of data, I was head of analysis in a lead consultancy there and I basically developed into a more data-oriented person with Fresh4cast. When I moved to London five years ago, I joined as Head of Customer development and now Im COO, so Im specifically looking at all the operations, the planning internally, and Im basically the interface between the customer and our production team.
Q: You said youve been in the produce space for a number of years and Im really fascinated by the idea of applying technologies like artificial intelligence and machine learning to sectors where that kind of technology really hasnt been applied before. I used to work for a motor company, for example, and that was a space that had been legacy space and the technology was very slow to develop because of the older people that were set in their ways. Do you feel like that was the same thing in the produce space? Was there a lack of innovation for a long time? And is that changing now?
A: We are definitely at a tipping point because, if you think about agriculture in general, and fresh produce is one of the sub sectors of agriculture, it is always lagging a bit behind compared to other sectors, for a variety of reasons. Service-based sectors are always more advanced, when we look at software, for instance. So, we definitely are at a tipping point, because, yes, as a sector, its a bit behind, but the benefit is that someone else already explored those paths. If youre lagging a bit behind, you know what works and what doesnt; its an important factor, especially in AI, because theres a lot of trial and error, and a lot of errors. There are a lot of very good examples where fresh produce can take inspiration from. So, the data is there, its building up and its just waiting for a machine learning application or an algorithmic forecaster to untap its potential.
Q: What do you think are some of the reasons why the space was lagging behind before?
A: Well, there are a lot of reasons; its a very difficult topic. If you think about innovation in general, not just technological innovation, its driven by key factors such as availability of talent, and being able to attract those talents in the sector. Compared to other sectors, of course, agriculture is a lower margin sector, so innovation is there but its not always the first priority. And so, people and resources are the main thing that I see at the moment that is actually changing. Until 10 years ago, you didnt see any fresh produce business having a data scientist in house or a team of people that was analyzing data, or actually hiring companies, such as Fresh4cast, for building a data set, building machine learning forecasters, and so on. Nowadays, there are a lot of requests for this, so the mentality of the top management is changing. That should drive this tipping point off of catching up with other sectors.
Q: Its funny what you said about being a little bit behind meaning that you get to actually see what works and what doesnt. I never thought of it that way before. Everybody else does this trial and error and then you come along and go, Okay, well, now we know what works, and we can just apply it.
A: When we think about the future and present, and we think, now is the present for everyone, but its not actually true because, for some people, theyre already in the future. So, we can basically copy or take a lot of inspiration from them.
Q: Talk about the ways that you apply AI and machine learning to the produce sector, and the ways that you use that data.
A: Fresh4cast has the three step approach. First of all, we have the customer as a data asset. As you know, machine learning feeds from data and learns from data, so thats the very first milestone. Building a data set is easier said than done, because its very laborious, and it requires different kinds of skills in the company, but we have different tools over there. So, whenever we have a data set that we can work with, the second bit is that we display it back to the customer using business intelligence tools that weve built. So, there is very specific data, for instance data analytics, that helps to understand the seasonality in the fresh produce business, and so on. Its about understanding what happened in the past in order to understand what is going to happen in the future. And the third point is using algorithmic forecasting, machine learning forecasting, very different tools, in order to extract even more value from that data asset, letting the machine find correlations and try to build models that will predict whats going to happen in the future, even specific inputs.
Q: So, you get the data and you have to make these forecasts based on that data. And then what do the growers and distributors do with that? How do they put it to use? What are some use cases for them?
A: Well, it depends on the supply chain. So, in order to answer your question, I need to talk about the supply chain approach of Fresh4cast. We work with the whole supply chain; we dont work only with one aspect. So, we both work with growers, with distributors, with data from retailers, for instance, and so on. And the important bit is that, for each point of the supply chain, the application changes. Ill give you two key examples: one is at production where, if a grower is going to plant this amount of strawberries, for instance, we give them the weather forecast and other inputs, so they know when to plant them and how much is going to harvest. So, in a nutshell, how many strawberries will be ready next week or in four weeks time and at what quality. On the other side, on the sales side, say there is a distributor thats supplying, for instance, a big retailer; the distributor needs to foresee and start planning for how much the retailer is going to ask in the next few weeks. So, we are talking about a forecast that tries to predict how much volume will be needed? If there is a big promo in Tesco, for instance, what is going to be the seasonality in the future? The cannibalization between the category and so on.
This is usually something that a human could do, but not at scale. There are a lot of very small tasks that a human could do, but it will take him so long that the data is already old, so it wouldnt be effective to use that forecast because we already have the actuals. A machine learning application, especially in fresh produce, is something that is automating a lot of very small tasks in a clever way. Its like a proficient assistant: it gives you an output, and the human, at the end of the day, decides what to do with it and makes decisions using this information.
Q: Youre telling growers when and how much to grow, and youre telling distributors and retailers how much theyre going to sell, is that right? So, everybody in the supply chain is getting this data to know how much to expect and how much they should expect to sell?
A: Exactly. If you want to be demand driven, you need to have a forecast in all of the key steps of your supply chain that feeds into the other. So, for instance, if you have a product that you will have next week, how much sales will you have next week? These two pieces of information together creates synergy and allows you to plan better, for instance, your warehouse activities, like how many man hours you need to pack the product.
Q: Where do you pull your data from? Like you said, youre using an existing database. Is any of your data proprietary?
A: We are a software as a service, first of all, so their data is confined inside the customers walls. It doesnt go anywhere and we only use the data for the customer. So, we dont do data aggregation with other customers or build models across customers. We do every application in isolation because we also work with fierce competitors. So, thats the way to go. We provide some data such as weather and international trade, but its all publicly available data, we dont have any proprietary data, we just have proprietary models that interpret the data.
Q: Its interesting that you dont aggregate that data. Wouldnt that be a more helpful way to get a broader view of the market?
A: We have a few cases where a few companies put together their data, but we need to have written consent. By default, we always work only with the data from the specific customer. And the reason why is that aggregation is useful for generic market trends. So, companies like Nielsen, they aggregate data across a lot of companies, so they have market trends. On our end, we tend to do the opposite: we specialize and fine tune the forecasting model specifically on that customers operations and that customer data. Because even if one company says the same thing as another one, it doesnt mean that their business structure and supply chain are similar. They could have a very different structure and, therefore, whenever you change something in the structure, the data reflects the operation. So, it would be a different kind of data.
Q: I would think that what one retailer sells would sell the same at another retailer but it sounds like maybe thats not necessarily the case.
A: We dont work directly with retailers; our customers always specialize only in fresh produce. Some of our customer data comes from the retailer, so we can forecast that, but our customers are the growers and distributors. The retailers, we can have the data about them, but they usually have their own forecasting system internally. Just to clarify.
Q: I know that you also offer a virtual analyst for your customers and Im very interested in learning more about that. I saw that it can send email reports, alerts, prepare Excel reports, and PowerPoint presentations. Whats the technology behind that?
A: Saga is our virtual assistant and you already mentioned a lot of the use cases that we use it for. Its basically a very proficient assistant that automates boring tasks. That means its very quick at doing them and it takes out that overhead of admin-based work that all the employees have in their routine job. From sales to production, they always have to work with an Excel file, for instance. With Saga, if a grower sends their estimate to the central planning team, they CC Saga in their email, then Saga is able to see the attachment, incorporate the attachment in our database, display analytics, and come back with an email report, which is very bespoke, depending on the customer. Basically, its good at interfacing, especially with email attachment and preparing reports on the fly. So, again, its all about automation, at the end of the day.
Q: Im assuming that the whole point of that is to free employees up to do more complicated tasks rather than, like you said, repetitive boring stuff that takes up a lot of time but it doesnt require much skill.
A: Exactly. The second point I mentioned before is the business intelligence bit. If you think about how much time you spend on getting the file out of ERP, for instance, elaborating with Excel, remapping, and so on, you will probably spend 80% on transforming and manipulating the data and 20% of your remaining time on actually analyzing the data and making a decision from what you just discovered. With automation, you get rid of all the preparation, so you get rid of all that 80%, but you have ready made analytics, so you can focus your attention on making better decisions for the business. And maybe you have some extra time to have coffee. Thats a very Italian thing to say, I realize.
Q: Have you been able to actually measure improved productivity for your customers? And do you have any numbers you could share with me?
A: Productivity is quite difficult. I could share with you a couple of examples of what happens, but they would be customer specific, so I would avoid that. I can share it with you, though, the improvement of our specialized business intelligence tools that allows the growers or the planner to improve their own accuracy. So, the key part of improving is measuring at the very beginning; you need to measure, understand, and after that you can improve. We have a case study where growers were producing forecasts for their crops and, using our business intelligence tool, they were measuring the accuracy of their own forecast on a daily and weekly basis. They managed to shave 20% of their total errors. So, just looking at their data and having these tools that give you key KPIs, or key performance indicators, on how good your forecast is, where your errors are, and so on, they could shave, without any other inputs, 20% of their errors out of their forecast activity.
Q: How do you measure the reduction in food waste?
A: The reduction in food waste depends, again, on the level of supply chain we are talking about. Im focusing a lot on the production side but, if you think about your sales side, if you have too much product, and you didnt know in advance, and youre not able to sell it in your warehouse, you will have whats called an overstock. Usually it is not a big problem in other categories but we are in fresh produce, so the shelf life, how long you can keep the product in the fridge, is very, very short. Thats one of the reasons why the founder, Mihai Ciobanu, actually focused on the fresh produce at the very beginning with forecasting, because its very, very difficult to forecast. And, on top of that, if you get the forecast wrong, you can lose a lot of money, basically, throwing away a product that should have been sold.
Q: Give me a preview of what youll be talking about at the London Produce Show and Conference.
A: The production will be focused on how to leverage your owndata assets and extra value from it. Specifically, we will look at how the forecasting activity, and specifically the machine learning tool, is helping both growers and distributors to improve efficiency and reduce waste in their own supply chain. We will have a couple of practical examples of how better forecasting is helping with these two topics.
Continued here:
Fresh4Cast leader argues for the crucial role of machine learning in moving the industry forward - Produce Business UK
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]