Fresh4Cast leader argues for the crucial role of machine learning in moving the industry forward – Produce Business UK
Automation is touching every industry; you cant survive in the 21st century economy without the data and the insights that come from technologies like artificial intelligence and machine learning. The food automation market, for example, isexpected to reach $29.4 billion by 2027.
Within the food space is produce and agriculture, and these are sub-spaces that havent seen quite as much advancement and adoption. Thats changing now thanks to companies likeFresh4cast, a company that uses AI forecasting to help growers and distributors improve productivity, increase margins and reduce waste. Its a solution that includes data sets build from historical, as well as trade statistics and weather, and a virtual assistant designed to automate tasks.
At the London Produce Show and Conference, we will be welcoming Fresh4casts COOMichele DallOlio.
Michele has based his career on the synergy between innovation and fresh produce. Starting with a degree in Agribusiness and a master in Management and Marketing, he explored the complexity of fresh produce data working as Head of Research for a leading Italian consultancy. He then moved to London and started a new journey withFresh4castwhere he is now the COO.
Michele spoke to us about how greater insights can help growers and distributorsDL benefit from increased insights, how that can lead to less food waste, and what hell be talking about at the London Produce Show.
Michele DallOlioCOOFresh4cast
Q: Lets kick this off by giving a little bit of an overview of yourself and about the Fresh4cast and what you do.
A: Im from Italy, I moved to London five years ago. I have always been working and studying in the fresh produce sector, from high school until now. In my career back in Italy, I was working with a lot of data, I was head of analysis in a lead consultancy there and I basically developed into a more data-oriented person with Fresh4cast. When I moved to London five years ago, I joined as Head of Customer development and now Im COO, so Im specifically looking at all the operations, the planning internally, and Im basically the interface between the customer and our production team.
Q: You said youve been in the produce space for a number of years and Im really fascinated by the idea of applying technologies like artificial intelligence and machine learning to sectors where that kind of technology really hasnt been applied before. I used to work for a motor company, for example, and that was a space that had been legacy space and the technology was very slow to develop because of the older people that were set in their ways. Do you feel like that was the same thing in the produce space? Was there a lack of innovation for a long time? And is that changing now?
A: We are definitely at a tipping point because, if you think about agriculture in general, and fresh produce is one of the sub sectors of agriculture, it is always lagging a bit behind compared to other sectors, for a variety of reasons. Service-based sectors are always more advanced, when we look at software, for instance. So, we definitely are at a tipping point, because, yes, as a sector, its a bit behind, but the benefit is that someone else already explored those paths. If youre lagging a bit behind, you know what works and what doesnt; its an important factor, especially in AI, because theres a lot of trial and error, and a lot of errors. There are a lot of very good examples where fresh produce can take inspiration from. So, the data is there, its building up and its just waiting for a machine learning application or an algorithmic forecaster to untap its potential.
Q: What do you think are some of the reasons why the space was lagging behind before?
A: Well, there are a lot of reasons; its a very difficult topic. If you think about innovation in general, not just technological innovation, its driven by key factors such as availability of talent, and being able to attract those talents in the sector. Compared to other sectors, of course, agriculture is a lower margin sector, so innovation is there but its not always the first priority. And so, people and resources are the main thing that I see at the moment that is actually changing. Until 10 years ago, you didnt see any fresh produce business having a data scientist in house or a team of people that was analyzing data, or actually hiring companies, such as Fresh4cast, for building a data set, building machine learning forecasters, and so on. Nowadays, there are a lot of requests for this, so the mentality of the top management is changing. That should drive this tipping point off of catching up with other sectors.
Q: Its funny what you said about being a little bit behind meaning that you get to actually see what works and what doesnt. I never thought of it that way before. Everybody else does this trial and error and then you come along and go, Okay, well, now we know what works, and we can just apply it.
A: When we think about the future and present, and we think, now is the present for everyone, but its not actually true because, for some people, theyre already in the future. So, we can basically copy or take a lot of inspiration from them.
Q: Talk about the ways that you apply AI and machine learning to the produce sector, and the ways that you use that data.
A: Fresh4cast has the three step approach. First of all, we have the customer as a data asset. As you know, machine learning feeds from data and learns from data, so thats the very first milestone. Building a data set is easier said than done, because its very laborious, and it requires different kinds of skills in the company, but we have different tools over there. So, whenever we have a data set that we can work with, the second bit is that we display it back to the customer using business intelligence tools that weve built. So, there is very specific data, for instance data analytics, that helps to understand the seasonality in the fresh produce business, and so on. Its about understanding what happened in the past in order to understand what is going to happen in the future. And the third point is using algorithmic forecasting, machine learning forecasting, very different tools, in order to extract even more value from that data asset, letting the machine find correlations and try to build models that will predict whats going to happen in the future, even specific inputs.
Q: So, you get the data and you have to make these forecasts based on that data. And then what do the growers and distributors do with that? How do they put it to use? What are some use cases for them?
A: Well, it depends on the supply chain. So, in order to answer your question, I need to talk about the supply chain approach of Fresh4cast. We work with the whole supply chain; we dont work only with one aspect. So, we both work with growers, with distributors, with data from retailers, for instance, and so on. And the important bit is that, for each point of the supply chain, the application changes. Ill give you two key examples: one is at production where, if a grower is going to plant this amount of strawberries, for instance, we give them the weather forecast and other inputs, so they know when to plant them and how much is going to harvest. So, in a nutshell, how many strawberries will be ready next week or in four weeks time and at what quality. On the other side, on the sales side, say there is a distributor thats supplying, for instance, a big retailer; the distributor needs to foresee and start planning for how much the retailer is going to ask in the next few weeks. So, we are talking about a forecast that tries to predict how much volume will be needed? If there is a big promo in Tesco, for instance, what is going to be the seasonality in the future? The cannibalization between the category and so on.
This is usually something that a human could do, but not at scale. There are a lot of very small tasks that a human could do, but it will take him so long that the data is already old, so it wouldnt be effective to use that forecast because we already have the actuals. A machine learning application, especially in fresh produce, is something that is automating a lot of very small tasks in a clever way. Its like a proficient assistant: it gives you an output, and the human, at the end of the day, decides what to do with it and makes decisions using this information.
Q: Youre telling growers when and how much to grow, and youre telling distributors and retailers how much theyre going to sell, is that right? So, everybody in the supply chain is getting this data to know how much to expect and how much they should expect to sell?
A: Exactly. If you want to be demand driven, you need to have a forecast in all of the key steps of your supply chain that feeds into the other. So, for instance, if you have a product that you will have next week, how much sales will you have next week? These two pieces of information together creates synergy and allows you to plan better, for instance, your warehouse activities, like how many man hours you need to pack the product.
Q: Where do you pull your data from? Like you said, youre using an existing database. Is any of your data proprietary?
A: We are a software as a service, first of all, so their data is confined inside the customers walls. It doesnt go anywhere and we only use the data for the customer. So, we dont do data aggregation with other customers or build models across customers. We do every application in isolation because we also work with fierce competitors. So, thats the way to go. We provide some data such as weather and international trade, but its all publicly available data, we dont have any proprietary data, we just have proprietary models that interpret the data.
Q: Its interesting that you dont aggregate that data. Wouldnt that be a more helpful way to get a broader view of the market?
A: We have a few cases where a few companies put together their data, but we need to have written consent. By default, we always work only with the data from the specific customer. And the reason why is that aggregation is useful for generic market trends. So, companies like Nielsen, they aggregate data across a lot of companies, so they have market trends. On our end, we tend to do the opposite: we specialize and fine tune the forecasting model specifically on that customers operations and that customer data. Because even if one company says the same thing as another one, it doesnt mean that their business structure and supply chain are similar. They could have a very different structure and, therefore, whenever you change something in the structure, the data reflects the operation. So, it would be a different kind of data.
Q: I would think that what one retailer sells would sell the same at another retailer but it sounds like maybe thats not necessarily the case.
A: We dont work directly with retailers; our customers always specialize only in fresh produce. Some of our customer data comes from the retailer, so we can forecast that, but our customers are the growers and distributors. The retailers, we can have the data about them, but they usually have their own forecasting system internally. Just to clarify.
Q: I know that you also offer a virtual analyst for your customers and Im very interested in learning more about that. I saw that it can send email reports, alerts, prepare Excel reports, and PowerPoint presentations. Whats the technology behind that?
A: Saga is our virtual assistant and you already mentioned a lot of the use cases that we use it for. Its basically a very proficient assistant that automates boring tasks. That means its very quick at doing them and it takes out that overhead of admin-based work that all the employees have in their routine job. From sales to production, they always have to work with an Excel file, for instance. With Saga, if a grower sends their estimate to the central planning team, they CC Saga in their email, then Saga is able to see the attachment, incorporate the attachment in our database, display analytics, and come back with an email report, which is very bespoke, depending on the customer. Basically, its good at interfacing, especially with email attachment and preparing reports on the fly. So, again, its all about automation, at the end of the day.
Q: Im assuming that the whole point of that is to free employees up to do more complicated tasks rather than, like you said, repetitive boring stuff that takes up a lot of time but it doesnt require much skill.
A: Exactly. The second point I mentioned before is the business intelligence bit. If you think about how much time you spend on getting the file out of ERP, for instance, elaborating with Excel, remapping, and so on, you will probably spend 80% on transforming and manipulating the data and 20% of your remaining time on actually analyzing the data and making a decision from what you just discovered. With automation, you get rid of all the preparation, so you get rid of all that 80%, but you have ready made analytics, so you can focus your attention on making better decisions for the business. And maybe you have some extra time to have coffee. Thats a very Italian thing to say, I realize.
Q: Have you been able to actually measure improved productivity for your customers? And do you have any numbers you could share with me?
A: Productivity is quite difficult. I could share with you a couple of examples of what happens, but they would be customer specific, so I would avoid that. I can share it with you, though, the improvement of our specialized business intelligence tools that allows the growers or the planner to improve their own accuracy. So, the key part of improving is measuring at the very beginning; you need to measure, understand, and after that you can improve. We have a case study where growers were producing forecasts for their crops and, using our business intelligence tool, they were measuring the accuracy of their own forecast on a daily and weekly basis. They managed to shave 20% of their total errors. So, just looking at their data and having these tools that give you key KPIs, or key performance indicators, on how good your forecast is, where your errors are, and so on, they could shave, without any other inputs, 20% of their errors out of their forecast activity.
Q: How do you measure the reduction in food waste?
A: The reduction in food waste depends, again, on the level of supply chain we are talking about. Im focusing a lot on the production side but, if you think about your sales side, if you have too much product, and you didnt know in advance, and youre not able to sell it in your warehouse, you will have whats called an overstock. Usually it is not a big problem in other categories but we are in fresh produce, so the shelf life, how long you can keep the product in the fridge, is very, very short. Thats one of the reasons why the founder, Mihai Ciobanu, actually focused on the fresh produce at the very beginning with forecasting, because its very, very difficult to forecast. And, on top of that, if you get the forecast wrong, you can lose a lot of money, basically, throwing away a product that should have been sold.
Q: Give me a preview of what youll be talking about at the London Produce Show and Conference.
A: The production will be focused on how to leverage your owndata assets and extra value from it. Specifically, we will look at how the forecasting activity, and specifically the machine learning tool, is helping both growers and distributors to improve efficiency and reduce waste in their own supply chain. We will have a couple of practical examples of how better forecasting is helping with these two topics.
Continued here:
Fresh4Cast leader argues for the crucial role of machine learning in moving the industry forward - Produce Business UK
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]