Grok combines Machine Learning and the Human Brain to build smarter AIOps – Diginomica
A few weeks ago I wrote a piece here about Moogsoft which has been making waves in the service assurance space by applying artificial intelligence and machine learning to the arcane task of keeping on keeping critical IT up and running and lessening the business impact of service interruptions. Its a hot area for startups and Ive since gotten article pitches from several other AIops firms at varying levels of development.
The most intriguing of these is a company called Grok which was formed by a partnership between Numenta, a pioneering AI research firm co-founded by Jeff Hawkins and Donna Dubinsky, who are famous for having started two classic mobile computing companies, Palm and Handspring, and Avik Partners. Avik is a company formed by brothers Casey and Josh Kindiger, two veteran entrepreneurs who have successfully started and grown multiple technology companies in service assurance and automation over the past two decadesmost recently Resolve Systems.
Josh Kindiger told me in a telephone interview how the partnership came about:
Numenta is primarily a research entity started by Jeff and Donna about 15 years ago to support Jeffs ideas about the intersection of neuroscience and data science. About five years ago, they developed an algorithm called HTM and a product called Grok for AWS which monitors servers on a network for anomalies. They werent interested in developing a company around it but we came along and saw a way to link our deep domain experience in the service management and automation areas with their technology. So, we licensed the name and the technology and built part of our Grok AIOps platform around it.
Jeff Hawkins has spent most of his post-Palm and Handspring years trying to figure out how the human brain works and then reverse engineering that knowledge into structures that machines can replicate. His model or theory, called hierarchical temporal memory (HTM), was originally described in his 2004 book On Intelligence written with Sandra Blakeslee. HTM is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the mammalian (in particular, human) brain. For a little light reading, I recommend a peer-reviewed paper called A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex.
Grok AIOps also uses traditional machine learning, alongside HTM. Said Kindiger:
When I came in, the focus was purely on anomaly detection and I immediately engaged with a lot of my old customers--large fortune 500 companies, very large service providers and quickly found out that while anomaly detection was extremely important, that first signal wasn't going to be enough. So, we transformed Grok into a platform. And essentially what we do is we apply the correct algorithm, whether it's HTM or something else, to the proper stream events, logs and performance metrics. Grok can enable predictive, self-healing operations within minutes.
The Grok AIOps platform uses multiple layers of intelligence to identify issues and support their resolution:
Anomaly detection
The HTM algorithm has proven exceptionally good at detecting and predicting anomalies and reducing noise, often up to 90%, by providing the critical context needed to identify incidents before they happen. It can detect anomalies in signals beyond low and high thresholds, such as signal frequency changes that reflect changes in the behavior of the underlying systems. Said Kindiger:
We believe HTM is the leading anomaly detection engine in the market. In fact, it has consistently been the best performing anomaly detection algorithm in the industry resulting in less noise, less false positives and more accurate detection. It is not only best at detecting an anomaly with the smallest amount of noise but it also scales, which is the biggest challenge.
Anomaly clustering
To help reduce noise, Grok clusters anomalies that belong together through the same event or cause.
Event and log clustering
Grok ingests all the events and logs from the integrated monitors and then applies to it to event and log clustering algorithms, including pattern recognition and dynamic time warping which also reduce noise.
IT operations have become almost impossible for humans alone to manage. Many companies struggle to meet the high demand due to increased cloud complexity. Distributed apps make it difficult to track where problems occur during an IT incident. Every minute of downtime directly impacts the bottom line.
In this environment, the relatively new solution to reduce this burden of IT management, dubbed AIOps, looks like a much needed lifeline to stay afloat. AIOps translates to "Algorithmic IT Operations" and its premise is that algorithms, not humans or traditional statistics, will help to make smarter IT decisions and help ensure application efficiency. AIOps platforms reduce the need for human intervention by using ML to set alerts and automation to resolve issues. Over time, AIOps platforms can learn patterns of behavior within distributed cloud systems and predict disasters before they happen.
Grok detects latent issues with cloud apps and services and triggers automations to troubleshoot these problems before requiring further human intervention. Its technology is solid, its owners have lots of experience in the service assurance and automation spaces, and who can resist the story of the first commercial use of an algorithm modeled on the human brain.
See the original post here:
Grok combines Machine Learning and the Human Brain to build smarter AIOps - Diginomica
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]