HEAL: A framework for health equity assessment of machine learning performance – Google Research
Posted by Mike Schaekermann, Research Scientist, Google Research, and Ivor Horn, Chief Health Equity Officer & Director, Google Core
Health equity is a major societal concern worldwide with disparities having many causes. These sources include limitations in access to healthcare, differences in clinical treatment, and even fundamental differences in the diagnostic technology. In dermatology for example, skin cancer outcomes are worse for populations such as minorities, those with lower socioeconomic status, or individuals with limited healthcare access. While there is great promise in recent advances in machine learning (ML) and artificial intelligence (AI) to help improve healthcare, this transition from research to bedside must be accompanied by a careful understanding of whether and how they impact health equity.
Health equity is defined by public health organizations as fairness of opportunity for everyone to be as healthy as possible. Importantly, equity may be different from equality. For example, people with greater barriers to improving their health may require more or different effort to experience this fair opportunity. Similarly, equity is not fairness as defined in the AI for healthcare literature. Whereas AI fairness often strives for equal performance of the AI technology across different patient populations, this does not center the goal of prioritizing performance with respect to pre-existing health disparities.
In Health Equity Assessment of machine Learning performance (HEAL): a framework and dermatology AI model case study, published in The Lancet eClinicalMedicine, we propose a methodology to quantitatively assess whether ML-based health technologies perform equitably. In other words, does the ML model perform well for those with the worst health outcomes for the condition(s) the model is meant to address? This goal anchors on the principle that health equity should prioritize and measure model performance with respect to disparate health outcomes, which may be due to a number of factors that include structural inequities (e.g., demographic, social, cultural, political, economic, environmental and geographic).
The HEAL framework proposes a 4-step process to estimate the likelihood that an ML-based health technology performs equitably:
The final steps output is termed the HEAL metric, which quantifies how anticorrelated the ML models performance is with health disparities. In other words, does the model perform better with populations that have the worse health outcomes?
This 4-step process is designed to inform improvements for making ML model performance more equitable, and is meant to be iterative and re-evaluated on a regular basis. For example, the availability of health outcomes data in step (2) can inform the choice of demographic factors and brackets in step (1), and the framework can be applied again with new datasets, models and populations.
With this work, we take a step towards encouraging explicit assessment of the health equity considerations of AI technologies, and encourage prioritization of efforts during model development to reduce health inequities for subpopulations exposed to structural inequities that can precipitate disparate outcomes. We should note that the present framework does not model causal relationships and, therefore, cannot quantify the actual impact a new technology will have on reducing health outcome disparities. However, the HEAL metric may help identify opportunities for improvement, where the current performance is not prioritized with respect to pre-existing health disparities.
As an illustrative case study, we applied the framework to a dermatology model, which utilizes a convolutional neural network similar to that described in prior work. This example dermatology model was trained to classify 288 skin conditions using a development dataset of 29k cases. The input to the model consists of three photos of a skin concern along with demographic information and a brief structured medical history. The output consists of a ranked list of possible matching skin conditions.
Using the HEAL framework, we evaluated this model by assessing whether it prioritized performance with respect to pre-existing health outcomes. The model was designed to predict possible dermatologic conditions (from a list of hundreds) based on photos of a skin concern and patient metadata. Evaluation of the model is done using a top-3 agreement metric, which quantifies how often the top 3 output conditions match the most likely condition as suggested by a dermatologist panel. The HEAL metric is computed via the anticorrelation of this top-3 agreement with health outcome rankings.
We used a dataset of 5,420 teledermatology cases, enriched for diversity in age, sex and race/ethnicity, to retrospectively evaluate the models HEAL metric. The dataset consisted of store-and-forward cases from patients of 20 years or older from primary care providers in the USA and skin cancer clinics in Australia. Based on a review of the literature, we decided to explore race/ethnicity, sex and age as potential factors of inequity, and used sampling techniques to ensure that our evaluation dataset had sufficient representation of all race/ethnicity, sex and age groups. To quantify pre-existing health outcomes for each subgroup we relied on measurements from public databases endorsed by the World Health Organization, such as Years of Life Lost (YLLs) and Disability-Adjusted Life Years (DALYs; years of life lost plus years lived with disability).
However, while the model was likely to perform equitably across age groups for cancer conditions specifically, we discovered that it had room for improvement across age groups for non-cancer conditions. For example, those 70+ have the poorest health outcomes related to non-cancer skin conditions, yet the model didn't prioritize performance for this subgroup.
For holistic evaluation, the HEAL metric cannot be employed in isolation. Instead this metric should be contextualized alongside many other factors ranging from computational efficiency and data privacy to ethical values, and aspects that may influence the results (e.g., selection bias or differences in representativeness of the evaluation data across demographic groups).
As an adversarial example, the HEAL metric can be artificially improved by deliberately reducing model performance for the most advantaged subpopulation until performance for that subpopulation is worse than all others. For illustrative purposes, given subpopulations A and B where A has worse health outcomes than B, consider the choice between two models: Model 1 (M1) performs 5% better for subpopulation A than for subpopulation B. Model 2 (M2) performs 5% worse on subpopulation A than B. The HEAL metric would be higher for M1 because it prioritizes performance on a subpopulation with worse outcomes. However, M1 may have absolute performances of just 75% and 70% for subpopulations A and B respectively, while M2 has absolute performances of 75% and 80% for subpopulations A and B respectively. Choosing M1 over M2 would lead to worse overall performance for all subpopulations because some subpopulations are worse-off while no subpopulation is better-off.
Accordingly, the HEAL metric should be used alongside a Pareto condition (discussed further in the paper), which restricts model changes so that outcomes for each subpopulation are either unchanged or improved compared to the status quo, and performance does not worsen for any subpopulation.
The HEAL framework, in its current form, assesses the likelihood that an ML-based model prioritizes performance for subpopulations with respect to pre-existing health disparities for specific subpopulations. This differs from the goal of understanding whether ML will reduce disparities in outcomes across subpopulations in reality. Specifically, modeling improvements in outcomes requires a causal understanding of steps in the care journey that happen both before and after use of any given model. Future research is needed to address this gap.
The HEAL framework enables a quantitative assessment of the likelihood that health AI technologies prioritize performance with respect to health disparities. The case study demonstrates how to apply the framework in the dermatological domain, indicating a high likelihood that model performance is prioritized with respect to health disparities across sex and race/ethnicity, but also revealing the potential for improvements for non-cancer conditions across age. The case study also illustrates limitations in the ability to apply all recommended aspects of the framework (e.g., mapping societal context, availability of data), thus highlighting the complexity of health equity considerations of ML-based tools.
This work is a proposed approach to address a grand challenge for AI and health equity, and may provide a useful evaluation framework not only during model development, but during pre-implementation and real-world monitoring stages, e.g., in the form of health equity dashboards. We hold that the strength of the HEAL framework is in its future application to various AI tools and use cases and its refinement in the process. Finally, we acknowledge that a successful approach towards understanding the impact of AI technologies on health equity needs to be more than a set of metrics. It will require a set of goals agreed upon by a community that represents those who will be most impacted by a model.
The research described here is joint work across many teams at Google. We are grateful to all our co-authors: Terry Spitz, Malcolm Pyles, Heather Cole-Lewis, Ellery Wulczyn, Stephen R. Pfohl, Donald Martin, Jr., Ronnachai Jaroensri, Geoff Keeling, Yuan Liu, Stephanie Farquhar, Qinghan Xue, Jenna Lester, Can Hughes, Patricia Strachan, Fraser Tan, Peggy Bui, Craig H. Mermel, Lily H. Peng, Yossi Matias, Greg S. Corrado, Dale R. Webster, Sunny Virmani, Christopher Semturs, Yun Liu, and Po-Hsuan Cameron Chen. We also thank Lauren Winer, Sami Lachgar, Ting-An Lin, Aaron Loh, Morgan Du, Jenny Rizk, Renee Wong, Ashley Carrick, Preeti Singh, Annisah Um'rani, Jessica Schrouff, Alexander Brown, and Anna Iurchenko for their support of this project.
Go here to see the original:
HEAL: A framework for health equity assessment of machine learning performance - Google Research
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]