How Telecom Companies Can Leverage Machine Learning To Boost Their Profits – Forbes
The number of smartphone users across the world has skyrocketed over the last decade and promises to do so in the future too. Additionally, most business functions can now be executed on mobile devices. However, despite the mobile surge, telecom operators around the world are still not that profitable, with average net profit margins hovering around the 17% mark. The main reasons for the middling profit rates are the high number of market rivals vouching for the same customer base and the high overhead expenses associated with the sector. Communication Service Providers (CSPs) need to become more data-driven to reduce such costs and, automatically, improve their profit margins. Increasing the involvement of AI in telecom operations enables telecom companies to make this switch from rigid, infrastructure-driven operations to a data-driven approach seamlessly.
The inclusion of AI in telecom functional areas positively impacts the bottom line of CSPs in several ways. Businesses can use specific capabilities, avatars or applications of machine learning and AI for this purpose.
Mobile networks are one of the prime components of the ever-expanding internet community. As stated earlier, a large number of internet users and business operations have gone mobile in recent times. Additionally, the emergence of 5G and edge applications, and the impending arrival of the metaverse, will simply increase the need for high-performance telecom networks. It is very likely that the standard automation tech and personnel will be overwhelmed by the relentless pressure of high-speed network connectivity and mobile calls.
The use of AI in telecom operations can transform an underperforming mobile network into a self-optimizing network (SON). Telecom businesses can monitor network equipment and anticipate equipment failure with AI-powered predictive analysis. Additionally, AI-based tools allow CSPs to keep network quality consistently high by monitoring key performance indicators such as traffic on a zone-to-zone basis. Apart from monitoring the performance of equipment, machine learning algorithms can also continually run pattern recognition while scanning network data to detect anomalies. Then, AI-based systems can either perform remedial actions or notify the network administrator and engineers in the region where the anomaly was detected. This enables telecom companies to fix network issues at source before they adversely impact customers.
Network security is another area of focus for telecom operators. Of late, the rising security issues in telecom networks have been a point of concern for CSPs globally. AI-based data security tools allow telecom companies to constantly monitor the cyber health of their networks. Machine learning algorithms perform analysis of global data networks and past security incidents to make key predictions of existing network vulnerabilities. In other words, AI-based network security tools enable telecom businesses to pre-empt future security complications and proactively take preventive measures to deal with them.
Ultimately, AI improves telecom networks in multiple ways. By improving the performance, anomaly detection and security of CSP networks, machine learning algorithms can enhance the user experience for telecom company clients. This will result in a growth of such companies customer base in the long term, and, by extension, an increase in profits.
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits
The Europol classifies the telecom sector to be particularly vulnerable to fraud. Telecom fraud involves the abuse of telecommunications systems such as mobile phones and tablets by criminals to siphon money off CSPs. As per a recent study, telecom fraud accounted for losses of US$40.1 billionapproximately 1.88% of the total revenue of telecom operators. One of the common types of telecom fraud is International Revenue Sharing Fraud (IRSF). IRSF involves criminals linking up with International Premium Rate Number (IPRN) providers to illegally acquire money from telecom companies by using bots to make an absurdly high number of international calls of long duration. Such calls are difficult to trace. Additionally, telecom companies cannot bill clients for such premium calls as the connections are fraudulent. So, telecom operators end up bearing the losses for such calls. The IPRNs and criminals share the spoils between themselves. Apart from IRSF, vishing (a portmanteau for voice calls and phishing attacks) is a way in which malicious entities dupe clients of telecom companies to extract money and data. The involvement of AI in telecom operations enables CSPs to detect and eliminate these kinds of fraud.
Machine learning algorithms assist telecom network engineers with detecting instances of illegal access, fake caller profiles and cloning. To achieve this, the algorithms perform behavioral monitoring of the global telecom networks of CSPs. Accordingly, the network traffic along such networks is closely monitored. The pattern recognition capabilities of AI algorithms come into play again as they enable network administrators to identify contentious scenarios such as several calls being made from a fraudulent number, or blank callsa general indicator of vishingbeing repeatedly made from questionable sources. One of the more prominent examples of telecom companies using data analytics for fraud detection and prevention is Vodafones partnership with Argyle Data. The data science-based firm analyzes the network traffic of the telecom giant for intelligent, data-driven fraud management.
Detecting and eliminating telecom fraud are major steps towards increasing the profit margins of CSPs. As you can see, the role of AI in telecom operations is significant for achieving this objective.
To reliably serve millions of clients, telecom companies need to have a massive workforce that can handle their backend operations on a daily basis efficiently. Dealing with such a large volume of customers creates several opportunities for human error.
Telecom companies can employ cognitive computinga robotics-based field that involves Natural Language Processing (NLP), Robotic Process Automation (RPA) and rule enginesto automate the rule-based processes such as sending marketing emails, autocompleting e-forms, recording data and carrying out certain tasks that can replicate human actions. The use of AI in telecom operations brings greater accuracy in back-office operations. As per a study conducted by Deloitte, several executives in the telecom, media and tech industry felt that the use of cognitive computing for backend operations brought substantial and transformative benefits to their respective businesses.
Customer sentiment analysis involves a set of data classification and analysis tasks carried out to understand the pulse of customers. This allows telecom companies to evaluate whether their clients like or dislike their services based on raw emotions. Marketers can use NLP and AI to sense the "mood" of their customers from their texts, emails or social media posts bearing a telecom companys name. Aspect-based sentiment analytics highlight the exact service areas in which customers have problems. For example, if a customer is upset about the number of calls getting dropped regularly and writes a long and incoherent email to a telcos customer service team about it, the machine learning algorithms employed for sentiment analysis can still autonomously ascertain their mood (angry) and the problem (the call drop rate).
Apart from sentiment analysis, telecom businesses can hugely benefit from the growing emergence of chatbots and virtual assistants. Service requests for network set-ups, installation, troubleshooting and maintenance-based issues can be resolved through such machine learning-based tools and applications. Virtual assistants enable CRM teams in telecom companies to manage a large number of customers with ease. In this way, CSPs can manage customer service and sentiment analysis successfully.
Across the board, users generally cite the quality of their telecom customer service to be below satisfactory. Telecom users are constantly infuriated by long waiting times to get to a service executive, unanswered complaint emails and poor grievance handling by CSPs. Poor CRM does not bode well for telecom companies as it maligns their reputation and diminishes shareholder confidence. By implementing machine learning for CRM, telecom companies can address such issues efficiently.
Like businesses in any other sector, telecom companies need to boost their profits for long-term survival and diversification. As stated at the beginning, there are multiple factors that thwart their chances of profit generation. Going down the data science route is one of the novel ways to overcome such challenges. By involving AI in telecom operations, CSPs can manage their data wisely and channelize their resources towards maximizing revenues.
Despite the positives associated with AI, only a limited percentage of telecom businesses have incorporated the technology for profit maximization. Gradually, one can expect that percentage to rise.
See the article here:
How Telecom Companies Can Leverage Machine Learning To Boost Their Profits - Forbes
- How machine learning and AI can be harnessed for mission-based lending - ImpactAlpha - January 27th, 2025 [January 27th, 2025]
- Machine learning meta-analysis identifies individual characteristics moderating cognitive intervention efficacy for anxiety and depression symptoms -... - January 27th, 2025 [January 27th, 2025]
- Using robotics to introduce AI and machine learning concepts into the elementary classroom - George Mason University - January 27th, 2025 [January 27th, 2025]
- Machine learning to identify environmental drivers of phytoplankton blooms in the Southern Baltic Sea - Nature.com - January 27th, 2025 [January 27th, 2025]
- Why Most Machine Learning Projects Fail to Reach Production and How to Beat the Odds - InfoQ.com - January 27th, 2025 [January 27th, 2025]
- Exploring the intersection of AI and climate physics: Machine learning's role in advancing climate science - Phys.org - January 27th, 2025 [January 27th, 2025]
- 5 Questions with Jonah Berger: Using Artificial Intelligence and Machine Learning in Litigation - Cornerstone Research - January 27th, 2025 [January 27th, 2025]
- Modernizing Patient Support: Harnessing Advanced Automation, Artificial Intelligence and Machine Learning to Improve Efficiency and Performance of... - January 27th, 2025 [January 27th, 2025]
- Param Popat Leads the Way in Transforming Machine Learning Systems - Tech Times - January 27th, 2025 [January 27th, 2025]
- Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods - Nature.com - January 27th, 2025 [January 27th, 2025]
- Machine learning is bringing back an infamous pseudoscience used to fuel racism - ZME Science - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning are Redefining Customer Experience Management - Customer Think - January 27th, 2025 [January 27th, 2025]
- Machine Learning Data Catalog Software Market Strategic Insights and Key Innovations: Leading Companies and... - WhaTech - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning Will Influence Fintech Frontend Development in 2025 - Benzinga - January 27th, 2025 [January 27th, 2025]
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]