How to Pick a Winning March Madness Bracket – Machine Learning Times – machine learning & data science news – The Predictive Analytics Times
Introduction
In 2019, over 40 million Americans wagered money on March Madness brackets, according to the American Gaming Association. Most of this money was bet in bracket pools, which consist of a group of people each entering their predictions of the NCAA tournament games along with a buy-in. The bracket that comes closest to being right wins. If you also consider the bracket pools where only pride is at stake, the number of participants is much greater. Despite all this attention, most do not give themselves the best chance to win because they are focused on the wrong question.
The Right Question
Mistake #3 in Dr. John Elders Top 10 Data Science Mistakes is to ask the wrong question. A cornerstone of any successful analytics project starts with having the right project goal; that is, to aim at the right target. If youre like most people, when you fill out your bracket, you ask yourself, What do I think is most likely to happen? This is the wrong question to ask if you are competing in a pool because the objective is to win money, NOT to make the most correct bracket. The correct question to ask is: What bracket gives me the best chance to win $? (This requires studying the payout formula. I used ESPN standard scoring (320 possible points per round) with all pool money given to the winner. (10 points are awarded for each correct win in the round of 64, 20 in the round of 32, and so forth, doubling until 320 are awarded for a correct championship call.))
While these questions seem similar, the brackets they produce will be significantly different.
If you ignore your opponents and pick the teams with the best chance to win games you will reduce your chance of winning money. Even the strongest team is unlikely to win it all, and even if they do, plenty of your opponents likely picked them as well. The best way to optimize your chances of making money is to choose a champion team with a good chance to win who is unpopular with your opponents.
Knowing how other people in your pool are filling out their brackets is crucial, because it helps you identify teams that are less likely to be picked. One way to see how others are filling out their brackets is via ESPNs Who Picked Whom page (Figure 1). It summarizes how often each team is picked to advance in each round across all ESPN brackets and is a great first step towards identifying overlooked teams.
Figure 1. ESPNs Who Picked Whom Tournament Challenge page
For a team to be overlooked, their perceived chance to win must be lower than their actual chance to win. The Who Picked Whom page provides an estimate of perceived chance to win, but to find undervalued teams we also need estimates for actual chance to win. This can range from a complex prediction model to your own gut feeling. Two sources I trust are 538s March Madness predictions and Vegas future betting odds. 538s predictions are based on a combination of computer rankings and has predicted performance well in past tournaments. There is also reason to pay attention to Vegas odds, because if they were too far off, the sportsbooks would lose money.
However, both sources have their flaws. 538 is based on computer ratings, so while they avoid human bias, they miss out on expert intuition. Most Vegas sportsbooks likely use both computer ratings and expert intuition to create their betting odds, but they are strongly motivated to have equal betting on all sides, so they are significantly affected by human perception. For example, if everyone was betting on Duke to win the NCAA tournament, they would increase Dukes betting odds so that more people would bet on other teams to avoid large losses. When calculating win probabilities for this article, I chose to average 538 and Vegas predictions to obtain a balance I was comfortable with.
Lets look at last year. Figure 2 compares a teams perceived chance to win (based on ESPNs Who Picked Whom) to their actual chance to win (based on 538-Vegas averaged predictions) for the leading 2019 NCAA Tournament teams. (Probabilities for all 64 teams in the tournament appear in Table 6 in the Appendix.)
Figure 2. Actual versus perceived chance to win March Madness for 8 top teams
As shown in Figure 2, participants over-picked Duke and North Carolina as champions and under-picked Gonzaga and Virginia. Many factors contributed to these selections; for example, most predictive models, avid sports fans, and bettors agreed that Duke was the best team last year. If you were the picking the bracket most likely to occur, then selecting Duke as champion was the natural pick. But ignoring selections made by others in your pool wont help you win your pool.
While this graph is interesting, how can we turn it into concrete takeaways? Gonzaga and Virginia look like good picks, but what about the rest of the teams hidden in that bottom left corner? Does it ever make sense to pick teams like Texas Tech, who had a 2.6% chance to win it all, and only 0.9% of brackets picking them? How much does picking an overvalued favorite like Duke hurt your chances of winning your pool?
To answer these questions, I simulated many bracket pools and found that the teams in Gonzagas and Virginias spots are usually the best picksthe most undervalued of the top four to five favorites. However, as the size of your bracket pool increases, overlooked lower seeds like third-seeded Texas Tech or fourth-seeded Virginia Tech become more attractive. The logic for this is simple: the chance that one of these teams wins it all is small, but if they do, then you probably win your pool regardless of the number of participants, because its likely no one else picked them.
Simulations Methodology
To simulate bracket pools, I first had to simulate brackets. I used an average of the Vegas and 538 predictions to run many simulations of the actual events of March Madness. As discussed above, this method isnt perfect but its a good approximation. Next, I used the Who Picked Whom page to simulate many human-created brackets. For each human bracket, I calculated the chance it would win a pool of size by first finding its percentile ranking among all human brackets assuming one of the 538-Vegas simulated brackets were the real events. This percentile is basically the chance it is better than a random bracket. I raised the percentile to the power, and then repeated for all simulated 538-Vegas brackets, averaging the results to get a single win probability per bracket.
For example, lets say for one 538-Vegas simulation, my bracket is in the 90th percentile of all human brackets, and there are nine other people in my pool. The chance I win the pool would be. If we assumed a different simulation, then my bracket might only be in the 20th percentile, which would make my win probability . By averaging these probabilities for all 538-Vegas simulations we can calculate an estimate of a brackets win probability in a pool of size , assuming we trust our input sources.
Results
I used this methodology to simulate bracket pools with 10, 20, 50, 100, and 1000 participants. The detailed results of the simulations are shown in Tables 1-6 in the Appendix. Virginia and Gonzaga were the best champion picks when the pool had 50 or fewer participants. Yet, interestingly, Texas Tech and Purdue (3-seeds) and Virginia Tech (4-seed) were as good or better champion picks when the pool had 100 or more participants.
General takeaways from the simulations:
Additional Thoughts
We have assumed that your local pool makes their selections just like the rest of America, which probably isnt true. If you live close to a team thats in the tournament, then that team will likely be over-picked. For example, I live in Charlottesville (home of the University of Virginia), and Virginia has been picked as the champion in roughly 40% of brackets in my pools over the past couple of years. If you live close to a team with a high seed, one strategy is to start with ESPNs Who Picked Whom odds, and then boost the odds of the popular local team and correspondingly drop the odds for all other teams. Another strategy Ive used is to ask people in my pool who they are picking. It is mutually beneficial, since Id be less likely to pick whoever they are picking.
As a parting thought, I want to describe a scenario from the 2019 NCAA tournament some of you may be familiar with. Auburn, a five seed, was winning by two points in the waning moments of the game, when they inexplicably fouled the other team in the act of shooting a three-point shot with one second to go. The opposing player, a 78% free throw shooter, stepped to the line and missed two out of three shots, allowing Auburn to advance. This isnt an alternate reality; this is how Auburn won their first-round game against 12-seeded New Mexico State. They proceeded to beat powerhouses Kansas, North Carolina, and Kentucky on their way to the Final Four, where they faced the exact same situation against Virginia. Virginias Kyle Guy made all his three free throws, and Virginia went on to win the championship.
I add this to highlight an important qualifier of this analysisits impossible to accurately predict March Madness. Were the people who picked Auburn to go to the Final Four geniuses? Of course not. Had Terrell Brown of New Mexico State made his free throws, they would have looked silly. There is no perfect model that can predict the future, and those who do well in the pools are not basketball gurus, they are just lucky. Implementing the strategies talked about here wont guarantee a victory; they just reduce the amount of luck you need to win. And even with the best modelsyoull still need a lot of luck. It is March Madness, after all.
Appendix: Detailed Analyses by Bracket Sizes
At baseline (randomly), a bracket in a ten-person pool has a 10% chance to win. Table 1 shows how that chance changes based on the round selected for a given team to lose. For example, brackets that had Virginia losing in the Round of 64 won a ten-person pool 4.2% of the time, while brackets that picked them to win it all won 15.1% of the time. As a reminder, these simulations were done with only pre-tournament informationthey had no data indicating that Virginia was the eventual champion, of course.
Table 1 Probability that a bracket wins a ten-person bracket pool given that it had a given team (row) making it to a given round (column) and no further
In ten-person pools, the best performing brackets were those that picked Virginia or Gonzaga as the champion, winning 15% of the time. Notably, early round picks did not have a big influence on the chance of winning the pool, the exception being brackets that had a one or two seed losing in the first round. Brackets that had a three seed or lower as champion performed very poorly, but having lower seeds making the Final Four did not have a significant impact on chance of winning.
Table 2 shows the same information for bracket pools with 20 people. The baseline chance is now 5%, and again the best performing brackets are those that picked Virginia or Gonzaga to win. Similarly, picks in the first few rounds do not have much influence. Michigan State has now risen to the third best Champion pick, and interestingly Purdue is the third best runner-up pick.
Table 2 Probability that a bracket wins a 20-person bracket pool given that it had a given team (row) making it to a given round (column) and no further
When the bracket pool size increases to 50, as shown in Table 3, picking the overvalued favorites (Duke and North Carolina) as champions significantly lowers your baseline chances (2%). The slightly undervalued two and three seeds now raise your baseline chances when selected as champions, but Virginia and Gonzaga remain the best picks.
Table 3 Probability that a bracket wins a 50-person bracket pool given that it had a given team (row) making it to a given round (column) and no further
With the bracket pool size at 100 (Table 4), Virginia and Gonzaga are joined by undervalued three-seeds Texas Tech and Purdue. Picking any of these four raises your baseline chances from 1% to close to 2%. Picking Duke or North Carolina again hurts your chances.
Table 4 Probability that a bracket wins a 100-person bracket pool given that it had a given team (row) making it to a given round (column) and no further
When the bracket pool grows to 1000 people (Table 5), there is a complete changing of the guard. Virginia Tech is now the optimal champion pick, raising your baseline chance of winning your pool from 0.1% to 0.4%, followed by the three-seeds and sixth-seeded Iowa State are the best champion picks.
Table 5 Probability that a bracket wins a 1000-person bracket pool given that it had a given team (row) making it to a given round (column) and no further
For Reference, Table 6 shows the actual chance to win versus the chance of being picked to win for all teams seeded seventh or better. These chances are derived from the ESPN Who Picked Whom page and the 538-Vegas predictions. The data for the top eight teams in Table 6 is plotted in Figure 2. Notably, Duke and North Carolina are overvalued, while the rest are all at least slightly undervalued.
The teams in bold in Table 6 are examples of teams that are good champion picks in larger pools. They all have a high ratio of actual chance to win to chance of being picked to win, but a low overall actual chance to win.
Table 6 Actual odds to win Championship vs Chance Team is Picked to Win Championship.
Undervalued teams in green; over-valued in red.
About the Author
Robert Robison is an experienced engineer and data analyst who loves to challenge assumptions and think outside the box. He enjoys learning new skills and techniques to reveal value in data. Robert earned a BS in Aerospace Engineering from the University of Virginia, and is completing an MS in Analytics through Georgia Tech.
In his free time, Robert enjoys playing volleyball and basketball, watching basketball and football, reading, hiking, and doing anything with his wife, Lauren.
Go here to read the rest:
How to Pick a Winning March Madness Bracket - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times
- Machine learning streamlines the complexities of making better proteins - Science News - February 20th, 2026 [February 20th, 2026]
- WBA Publishes Guidance on Artificial Intelligence and Machine Learning for Intelligent Wi-Fi - ARC Advisory Group - February 20th, 2026 [February 20th, 2026]
- Machine learning-predicted insulin resistance is a risk factor for 12 types of cancer - Nature - February 20th, 2026 [February 20th, 2026]
- Exploring Machine Learning at the DOF - University of the Philippines Diliman - February 20th, 2026 [February 20th, 2026]
- AI and Machine Learning - Where US agencies are finding measurable value from AI - Smart Cities World - February 20th, 2026 [February 20th, 2026]
- Modeling visual perception of Chinese classical private gardens with image parsing and interpretable machine learning - Nature - February 16th, 2026 [February 16th, 2026]
- Analysis of Market Segments and Major Growth Areas in the Machine Learning (ML) Feature Lineage Tools Market - openPR.com - February 16th, 2026 [February 16th, 2026]
- Apple Makes One Of Its Largest Ever Acquisitions, Buys The Israeli Machine Learning Firm, Q.ai - Wccftech - February 1st, 2026 [February 1st, 2026]
- Keysights Machine Learning Toolkit to Speed Device Modeling and PDK Dev - All About Circuits - February 1st, 2026 [February 1st, 2026]
- University of Missouri Study: AI/Machine Learning Improves Cardiac Risk Prediction Accuracy - Quantum Zeitgeist - February 1st, 2026 [February 1st, 2026]
- How AI and Machine Learning Are Transforming Mobile Banking Apps - vocal.media - February 1st, 2026 [February 1st, 2026]
- Machine Learning in Production? What This Really Means - Towards Data Science - January 28th, 2026 [January 28th, 2026]
- Best Machine Learning Stocks of 2026 and How to Invest in Them - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Machine learning-based prediction of mortality risk from air pollution-induced acute coronary syndrome in the Western Pacific region - Nature - January 28th, 2026 [January 28th, 2026]
- Machine Learning Predicts the Strength of Carbonated Recycled Concrete - AZoBuild - January 28th, 2026 [January 28th, 2026]
- Vertiv Next Predict is a new AI-powered, managed service that combines field expertise and advanced machine learning algorithms to anticipate issues... - January 28th, 2026 [January 28th, 2026]
- Machine Learning in Network Security: The 2026 Firewall Shift - openPR.com - January 28th, 2026 [January 28th, 2026]
- Why IBMs New Machine-Learning Model Is a Big Deal for Next-Generation Chips - TipRanks - January 24th, 2026 [January 24th, 2026]
- A no-compromise amplifier solution: Synergy teams up with Wampler and Friedman to launch its machine-learning power amp and promises to change the... - January 24th, 2026 [January 24th, 2026]
- Our amplifier learns your cabinets impedance through controlled sweeps and continues to monitor it in real-time: Synergys Power Amp Machine-Learning... - January 24th, 2026 [January 24th, 2026]
- Machine Learning Studied to Predict Response to Advanced Overactive Bladder Therapies - Sandip Vasavada - UroToday - January 24th, 2026 [January 24th, 2026]
- Blending Education, Machine Learning to Detect IV Fluid Contaminated CBCs, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Why its critical to move beyond overly aggregated machine-learning metrics - MIT News - January 24th, 2026 [January 24th, 2026]
- Machine Learning Lends a Helping Hand to Prosthetics - AIP Publishing LLC - January 24th, 2026 [January 24th, 2026]
- Hassan Taher Explains the Fundamentals of Machine Learning and Its Relationship to AI - mitechnews.com - January 24th, 2026 [January 24th, 2026]
- Keysight targets faster PDK development with machine learning toolkit - eeNews Europe - January 24th, 2026 [January 24th, 2026]
- Training and external validation of machine learning supervised prognostic models of upper tract urothelial cancer (UTUC) after nephroureterectomy -... - January 24th, 2026 [January 24th, 2026]
- Age matters: a narrative review and machine learning analysis on shared and separate multidimensional risk domains for early and late onset suicidal... - January 24th, 2026 [January 24th, 2026]
- Uncovering Hidden IV Fluid Contamination Through Machine Learning, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Machine learning identifies factors that may determine the age of onset of Huntington's disease - Medical Xpress - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - WEF expands Fourth Industrial Revolution Network - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- Machine-learning analysis reclassifies armed conflicts into three new archetypes - The Brighter Side of News - January 24th, 2026 [January 24th, 2026]
- Machine learning and AI the future of drought monitoring in Canada - sasktoday.ca - January 24th, 2026 [January 24th, 2026]
- Machine learning revolutionises the development of nanocomposite membranes for CO capture - European Coatings - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - Leading data infrastructure is helping power better lives in Sunderland - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]