Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations … – Nature.com
Low-fidelity and high-fidelity data
The LF model was made in the US NRC codes, Purdue Advanced Reactor Core Simulator (PARCS)19. This model consists of three different fuel bundles labeled each with varying uranium enrichment and gadolinia concentration. The model includes 560 fuel bundles encircled by reflectors. Along with the radial setup, there are 26 axial planes made up of 24 fuel nodes, plus a node of reflectors at the top and bottom planes.
In this work, the model was made in quarter symmetry to save computational time and further reduce the data complexity20. The symmetry was conducted in the radial direction only. The axial discretization was explicitly modeled from bottom to top of the reactor, from reflector to reflector. This is because BWRs axial variation is not symmetrical axially, so it is required to model it in sufficient detail. Based on this description, the boundary condition was set to be reflective in the west and north of the radial core and vacuum (zero incoming neutron currents) for the other directions.
For developing the ML model, the depletion steps were reduced to 12 steps, from the typical 3040 depletion steps. The PARCS cross-section library was generated using CASMO-4 for fuel lattices and reflectors. The library includes group constants from eight lattice simulations over control rod positions, coolant density, and fuel temperature. Lattices were simulated at 23 kW/g of heavy metal power density to a burnup of 50 GWd/MT of initial heavy metal.
The HF data were collected using Serpent21 Monte Carlo simulations. The model was created to reproduce PARCS solutions on the same core conditions but with higher resolutions and using the state-of-the-art simulation approach. This means no diffusion approximation and continuous energy neutron transport was modeled in detailed geometry structures. Each Serpent calculation was run on 500,000 particles, 500 active cycles, and 100 inactive cycles. The other simulation settings were also optimized for depletion calculations.
The reactor model used in this work is based on cycle 1 of the Edwin Hatch Unit 1 nuclear power plant. The power plant, located near Baxley, Georgia, is a boiling water reactor of the BWR-4 design, developed by General Electric, with a net electrical output of approximately 876 MWe and 2436 MWth of thermal output. Since its commissioning in 1975, Unit 1 has operated with a core design containing uranium dioxide fuel assemblies, utilizing a direct cycle where water boils within the reactor vessel to generate steam that drives turbines.
The specification of cycle 1 of Hatch reactor unit 1 is presented in Table 5. While it is a commercial, large power plant, Hatch 1 is not as large as a typical 1,000 GWe LWR. Some BWR designs also have about 700-800 assemblies. Nevertheless, due to the availability of the core design for this work, it is generally viable to use this model as a test case.
There are 560 fuel bundles the size of a 7(times)7 GE lattice in the Hatch 1 Cycle 1 model. Out of the number of fuel bundles in the cycle 1 core, there are three different types of fuels with varying enrichments and burnable absorbers. Using the procedures in running the Serpent model, high-resolution simulations were obtained as shown in the geometry representation in Fig. 6. In the figure, different colors represent different material definitions in Serpent. Because of how the materials were defined individually, the color scheme shown also varied from pin to pin and assembly to assembly. The individual material definition in the pin level was required to capture the isotopic concentration and instantaneous state variables at different fuel exposures and core conditions.
Geometry representation of the full-size BWR core modeled in Serpent. Images were generated by the Serpent geometry plotter.
There are 2400 data points collected as samples for this work with various combinations of control blade patterns and core flow rates and 12 different burnup steps. These data points are translated from 200 independent cycle runs for both PARCS and Serpent to provide LF and HF simulation data, respectively. The collected data were processed into a single HDF5 file.
The data processing parts are performed through data split procedures and data normalization. The data is separated into different sets, with a training-validation-test ratio of 70:15:15. The training data is used to teach the network, the validation data to tune hyperparameters and prevent overfitting, and the test data to evaluate the models generalization performance on unseen data. From the 2400 data points (200 cycles), the dataset was separated into:
Train Dataset: 140 runs or 1680 data points
Validation Dataset: 30 runs or 360 data points
Test Dataset: 30 runs or 360 data points
The data splitting process was not conducted randomly, but based on the average control blade position in a cycle run. Figure 7 presents the distribution of the average control rod inserted in the reactor. The maximum number of steps is 48 for fully withdrawn blades. In the plot, it can be inferred that the test data have the lowest average CR position (largest insertion), followed by the validation set, and the train data have the highest average CR position (smallest insertion).
Train-validation-test data split based on average control blade position in the BWR core. Image was generated using Python Matplotlib Library.
The CR-based splitting for the dataset has the purpose of demonstrating the generalization of the model on out-of-sample CR position data. On the other hand, random splitting is not preferred for small datasets, like this problem as the ML model tends to overfit (or imitate) the data. The fixed (CR-based) splitting process used here ensures that the model can perform well on data with a different distribution than the training dataset.
After splitting the data, normalization of the data is important for the ML model to ensure data integrity and avoid anomalies. In this context, the data processing employs Min-Max scaling, a common normalization technique, to rescale the features to a range [0, 1]. This is achieved by subtracting the minimum value of each feature and then dividing by the range of that feature. The scaling is conducted to fit the training data using the MinMaxScaler class from the scikit-learn package then apply the same scaling to the validation and testing data.
The target parameters used here are the core eigenvalue (or (k_{textrm eff})) and power distribution. The ML model will provide the correction (via predicted errors) of the target parameters that can be used to obtain the predicted HF parameters of interest. The perturbed variables are the parameters that are varied and govern the data collection process and in ML modeling. In this case, the perturbed variables are summarized in Table 6.
In this work, a neural network architecture, called BWR-ComodoNet (Boiling Water ReactorCorrection Model for Diffusion SolverNetwork) is built which is based on the 3D2D convolutional neural network (CNN) architecture. This means that the spatial data in the input and output are processed according to their actual dimensions, which are 3D and 2D arrays. The scalar data are still processed using standard dense layers of neural networks.
The architecture of the BWR-ComodoNet is presented in Fig. 8. The three input features: core flow rate, control rod pattern, and nodal exposure enter three different channels of the network. The scalar parameter goes directly into the dense layer in the encoding process, while the 2D and 3D parameters enter the 2D and 3D CNN layers, respectively. The encoding processes end in the step where all channels are concatenated into one array and connected to dense layers.
Architecture of BWR-ComodoNet using 3D-2D CNN-based encoder-decoder neural networks. Image was generated using draw.io diagram application.
The decoding process follows the shape of the target data. In this case, the output will be both (k_{textrm eff}) error (scalar) and the 3D nodal power error. Since the quarter symmetry is used in the calculation, the 3D nodal power has the shape of (14,14,26) in the x,y, and z dimensions, respectively. BWR-ComodoNet outputs the predicted errors, so there is an additional post-processing step to add the LF data with the predicted error to obtain the predicted HF data.
The output parameters from the neural network model comprise errors in the effective neutron multiplication factor, (k_{eff}), and the errors in nodal power, which is quantified as:
$$begin{aligned} begin{array}{l} e_{k} = k_H-k_L \ vec {e}_{P} = vec {P}_H-vec {P}_L end{array} end{aligned}$$
(4)
Here, (e_k) denotes the error in (k_{eff}) and (vec {e}_{P}) represents the nodal power error vector. The subscripts H and L indicate high-fidelity and low-fidelity data, respectively. According to the equation, the predicted high-fidelity data can be determined by adding the error predictions from the machine learning model to the low-fidelity solutions22.
Given the predicted errors, (hat{e}_k) and (hat{vec {e}}_{P}), the predicted high-fidelity data, (k_H) and (vec {P}_H) is defined as:
$$begin{aligned} begin{array}{l} k_H = k_L + hat{e}_k = k_L + mathscr {N}_k(varvec{theta }, textbf{x}) \ vec {P}_H = vec {P}_L + hat{vec {e}}_{P} = vec {P}_L + mathscr {N}_P(varvec{theta }, textbf{x}) end{array} end{aligned}$$
(5)
where (mathscr {N}_k(varvec{theta }, textbf{x})) and (mathscr {N}_P(varvec{theta }, textbf{x})) are the neural networks for (k_{eff}) and power with optimized weights (varvec{theta }) and input features (textbf{x}). Although Eq. 5 appears to represent a linear combination of low-fidelity parameters and predicted errors, itis important to note that the neural network responsible for predicting the errors is inherently non-linear. As a result, the predicted error is expected to encapsulate the non-linear discrepancies between the low-fidelity and high-fidelity data.
The machine learning architecture for predicting reactor parameters is constructed using the TensorFlow Python library. The optimization of the model is performed through Bayesian Optimization, a technique that models the objective function, which in this case is to minimize validation loss, using a Gaussian Process (GP). This surrogate model is then used to efficiently optimize the function23. Hyperparameter tuning was conducted over 500 trials to determine the optimal configuration, including the number of layers and nodes, dropout values, and learning rates.
The activation function employed for all layers is the Rectified Linear Unit (ReLU), chosen for its effectiveness in introducing non-linearity without significant computational cost. The output layer utilizes a linear activation function to directly predict the target data.
Regularization is implemented through dropout layers to prevent overfitting and improve model generalizability. Additionally, early stopping is employed with a patience of 96 epochs, based on monitoring validation loss, to halt training if no improvement is observed. A learning rate schedule is also applied, reducing the learning rate by a factor of 0.1 every 100 epochs, starting with an initial rate. The training process is conducted with a maximum of 512 epochs and a batch size of 64, allowing for sufficient iterations to optimize the model while managing computational resources.
It is important to note that the direct ML model mentioned in the results, which directly outputs (k_{eff}) and nodal power, follows a different architecture and is independently optimized with distinct hyperparameters compared to the LF+ML model. This differentiation allows for tailored optimization to suit the specific objectives of each model.
See the original post here:
Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations ... - Nature.com
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]