Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations … – Nature.com
Low-fidelity and high-fidelity data
The LF model was made in the US NRC codes, Purdue Advanced Reactor Core Simulator (PARCS)19. This model consists of three different fuel bundles labeled each with varying uranium enrichment and gadolinia concentration. The model includes 560 fuel bundles encircled by reflectors. Along with the radial setup, there are 26 axial planes made up of 24 fuel nodes, plus a node of reflectors at the top and bottom planes.
In this work, the model was made in quarter symmetry to save computational time and further reduce the data complexity20. The symmetry was conducted in the radial direction only. The axial discretization was explicitly modeled from bottom to top of the reactor, from reflector to reflector. This is because BWRs axial variation is not symmetrical axially, so it is required to model it in sufficient detail. Based on this description, the boundary condition was set to be reflective in the west and north of the radial core and vacuum (zero incoming neutron currents) for the other directions.
For developing the ML model, the depletion steps were reduced to 12 steps, from the typical 3040 depletion steps. The PARCS cross-section library was generated using CASMO-4 for fuel lattices and reflectors. The library includes group constants from eight lattice simulations over control rod positions, coolant density, and fuel temperature. Lattices were simulated at 23 kW/g of heavy metal power density to a burnup of 50 GWd/MT of initial heavy metal.
The HF data were collected using Serpent21 Monte Carlo simulations. The model was created to reproduce PARCS solutions on the same core conditions but with higher resolutions and using the state-of-the-art simulation approach. This means no diffusion approximation and continuous energy neutron transport was modeled in detailed geometry structures. Each Serpent calculation was run on 500,000 particles, 500 active cycles, and 100 inactive cycles. The other simulation settings were also optimized for depletion calculations.
The reactor model used in this work is based on cycle 1 of the Edwin Hatch Unit 1 nuclear power plant. The power plant, located near Baxley, Georgia, is a boiling water reactor of the BWR-4 design, developed by General Electric, with a net electrical output of approximately 876 MWe and 2436 MWth of thermal output. Since its commissioning in 1975, Unit 1 has operated with a core design containing uranium dioxide fuel assemblies, utilizing a direct cycle where water boils within the reactor vessel to generate steam that drives turbines.
The specification of cycle 1 of Hatch reactor unit 1 is presented in Table 5. While it is a commercial, large power plant, Hatch 1 is not as large as a typical 1,000 GWe LWR. Some BWR designs also have about 700-800 assemblies. Nevertheless, due to the availability of the core design for this work, it is generally viable to use this model as a test case.
There are 560 fuel bundles the size of a 7(times)7 GE lattice in the Hatch 1 Cycle 1 model. Out of the number of fuel bundles in the cycle 1 core, there are three different types of fuels with varying enrichments and burnable absorbers. Using the procedures in running the Serpent model, high-resolution simulations were obtained as shown in the geometry representation in Fig. 6. In the figure, different colors represent different material definitions in Serpent. Because of how the materials were defined individually, the color scheme shown also varied from pin to pin and assembly to assembly. The individual material definition in the pin level was required to capture the isotopic concentration and instantaneous state variables at different fuel exposures and core conditions.
Geometry representation of the full-size BWR core modeled in Serpent. Images were generated by the Serpent geometry plotter.
There are 2400 data points collected as samples for this work with various combinations of control blade patterns and core flow rates and 12 different burnup steps. These data points are translated from 200 independent cycle runs for both PARCS and Serpent to provide LF and HF simulation data, respectively. The collected data were processed into a single HDF5 file.
The data processing parts are performed through data split procedures and data normalization. The data is separated into different sets, with a training-validation-test ratio of 70:15:15. The training data is used to teach the network, the validation data to tune hyperparameters and prevent overfitting, and the test data to evaluate the models generalization performance on unseen data. From the 2400 data points (200 cycles), the dataset was separated into:
Train Dataset: 140 runs or 1680 data points
Validation Dataset: 30 runs or 360 data points
Test Dataset: 30 runs or 360 data points
The data splitting process was not conducted randomly, but based on the average control blade position in a cycle run. Figure 7 presents the distribution of the average control rod inserted in the reactor. The maximum number of steps is 48 for fully withdrawn blades. In the plot, it can be inferred that the test data have the lowest average CR position (largest insertion), followed by the validation set, and the train data have the highest average CR position (smallest insertion).
Train-validation-test data split based on average control blade position in the BWR core. Image was generated using Python Matplotlib Library.
The CR-based splitting for the dataset has the purpose of demonstrating the generalization of the model on out-of-sample CR position data. On the other hand, random splitting is not preferred for small datasets, like this problem as the ML model tends to overfit (or imitate) the data. The fixed (CR-based) splitting process used here ensures that the model can perform well on data with a different distribution than the training dataset.
After splitting the data, normalization of the data is important for the ML model to ensure data integrity and avoid anomalies. In this context, the data processing employs Min-Max scaling, a common normalization technique, to rescale the features to a range [0, 1]. This is achieved by subtracting the minimum value of each feature and then dividing by the range of that feature. The scaling is conducted to fit the training data using the MinMaxScaler class from the scikit-learn package then apply the same scaling to the validation and testing data.
The target parameters used here are the core eigenvalue (or (k_{textrm eff})) and power distribution. The ML model will provide the correction (via predicted errors) of the target parameters that can be used to obtain the predicted HF parameters of interest. The perturbed variables are the parameters that are varied and govern the data collection process and in ML modeling. In this case, the perturbed variables are summarized in Table 6.
In this work, a neural network architecture, called BWR-ComodoNet (Boiling Water ReactorCorrection Model for Diffusion SolverNetwork) is built which is based on the 3D2D convolutional neural network (CNN) architecture. This means that the spatial data in the input and output are processed according to their actual dimensions, which are 3D and 2D arrays. The scalar data are still processed using standard dense layers of neural networks.
The architecture of the BWR-ComodoNet is presented in Fig. 8. The three input features: core flow rate, control rod pattern, and nodal exposure enter three different channels of the network. The scalar parameter goes directly into the dense layer in the encoding process, while the 2D and 3D parameters enter the 2D and 3D CNN layers, respectively. The encoding processes end in the step where all channels are concatenated into one array and connected to dense layers.
Architecture of BWR-ComodoNet using 3D-2D CNN-based encoder-decoder neural networks. Image was generated using draw.io diagram application.
The decoding process follows the shape of the target data. In this case, the output will be both (k_{textrm eff}) error (scalar) and the 3D nodal power error. Since the quarter symmetry is used in the calculation, the 3D nodal power has the shape of (14,14,26) in the x,y, and z dimensions, respectively. BWR-ComodoNet outputs the predicted errors, so there is an additional post-processing step to add the LF data with the predicted error to obtain the predicted HF data.
The output parameters from the neural network model comprise errors in the effective neutron multiplication factor, (k_{eff}), and the errors in nodal power, which is quantified as:
$$begin{aligned} begin{array}{l} e_{k} = k_H-k_L \ vec {e}_{P} = vec {P}_H-vec {P}_L end{array} end{aligned}$$
(4)
Here, (e_k) denotes the error in (k_{eff}) and (vec {e}_{P}) represents the nodal power error vector. The subscripts H and L indicate high-fidelity and low-fidelity data, respectively. According to the equation, the predicted high-fidelity data can be determined by adding the error predictions from the machine learning model to the low-fidelity solutions22.
Given the predicted errors, (hat{e}_k) and (hat{vec {e}}_{P}), the predicted high-fidelity data, (k_H) and (vec {P}_H) is defined as:
$$begin{aligned} begin{array}{l} k_H = k_L + hat{e}_k = k_L + mathscr {N}_k(varvec{theta }, textbf{x}) \ vec {P}_H = vec {P}_L + hat{vec {e}}_{P} = vec {P}_L + mathscr {N}_P(varvec{theta }, textbf{x}) end{array} end{aligned}$$
(5)
where (mathscr {N}_k(varvec{theta }, textbf{x})) and (mathscr {N}_P(varvec{theta }, textbf{x})) are the neural networks for (k_{eff}) and power with optimized weights (varvec{theta }) and input features (textbf{x}). Although Eq. 5 appears to represent a linear combination of low-fidelity parameters and predicted errors, itis important to note that the neural network responsible for predicting the errors is inherently non-linear. As a result, the predicted error is expected to encapsulate the non-linear discrepancies between the low-fidelity and high-fidelity data.
The machine learning architecture for predicting reactor parameters is constructed using the TensorFlow Python library. The optimization of the model is performed through Bayesian Optimization, a technique that models the objective function, which in this case is to minimize validation loss, using a Gaussian Process (GP). This surrogate model is then used to efficiently optimize the function23. Hyperparameter tuning was conducted over 500 trials to determine the optimal configuration, including the number of layers and nodes, dropout values, and learning rates.
The activation function employed for all layers is the Rectified Linear Unit (ReLU), chosen for its effectiveness in introducing non-linearity without significant computational cost. The output layer utilizes a linear activation function to directly predict the target data.
Regularization is implemented through dropout layers to prevent overfitting and improve model generalizability. Additionally, early stopping is employed with a patience of 96 epochs, based on monitoring validation loss, to halt training if no improvement is observed. A learning rate schedule is also applied, reducing the learning rate by a factor of 0.1 every 100 epochs, starting with an initial rate. The training process is conducted with a maximum of 512 epochs and a batch size of 64, allowing for sufficient iterations to optimize the model while managing computational resources.
It is important to note that the direct ML model mentioned in the results, which directly outputs (k_{eff}) and nodal power, follows a different architecture and is independently optimized with distinct hyperparameters compared to the LF+ML model. This differentiation allows for tailored optimization to suit the specific objectives of each model.
See the original post here:
Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations ... - Nature.com
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]