Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C … – Nature.com
In this subsection, we evaluate the feature extraction effect of the IDAE by conducting experiments on the Hepatitis C dataset with different configurations to test its generalization ability. We would like to investigate the following two questions:
How effective is IDAE in classifying the characteristics of hepatitis C ?
If the depth of the neural network is increased, can IDAE mitigate the gradient explosion or gradient vanishing problem while improving the classification of hepatitis C disease ?
Does an IDAE of the same depth tend to converge more easily than other encoders on the hepatitis C dataset ?
Firstly, out of public health importance, Hepatitis C (HCV) is a global public health problem due to the fact that its chronic infection may lead to serious consequences such as cirrhosis and liver cancer, and Hepatitis C is highly insidious, leading to a large number of undiagnosed cases.It is worth noting that despite the wide application of traditional machine learning and deep learning algorithms in the healthcare field, especially in the research of acute conditions such as cancer, however, there is a significant lack of in-depth exploration of chronic infectious diseases, such as hepatitis C. In addition, the complex biological attributes of the hepatitis C virus and the significant individual differences among patients together give rise to the challenge of multilevel nonlinear correlation among features. Therefore, the application of deep learning methods to the hepatitis C dataset is not only an important way to validate the efficacy of such algorithms, but also an urgent research direction that needs to be put into practice to fill the existing research gaps.
The Helmholtz Center for Infection Research, the Institute of Clinical Chemistry at the Medical University of Hannover, and other research organizations provided data on people with hepatitis C, which was used to compile the information in this article. The collection includes demographic data, such as age, as well as test results for blood donors and hepatitis C patients. By examining the dataset, we can see that the primary features are the quantity of different blood components and liver function, and that the only categorical feature in the dataset is gender. Table 1 shows the precise definition of these fields.
This essay investigates the categorisation issue. The Table 2 lists the description and sample size of the five main classification labels. In the next training, in order to address the effect of sample imbalance on the classification effect, the model will be first smote32 sampled and then trained using the smote sampled samples. With a sample size of 400 for each classification.
The aim of this paper is to investigate whether IDAE can extract more representative and robust features, and we have chosen a baseline model that includes both traditional machine learning algorithms and various types of autoencoders, which will be described in more detail below:
SVM: support vector machines are used to achieve optimal classification of data by constructing maximally spaced classification hyperplanes and use kernel functions to deal with nonlinear problems, aiming to seek to identify decision boundaries that maximize spacing in the training data.
KNN: the K Nearest Neighbors algorithm determines the class or predictive value of a new sample by calculating its distance from each sample in the training set through its K nearest neighbors.
RF: random forests utilize random feature selection and Bootstrap sampling techniques to construct and combine the prediction results of multiple decision trees to effectively handle classification and regression problems.
AE: autoencoder is a neural network structure consisting of an encoder and a decoder that learns a compact, low-dimensional feature representation of the data through a autoreconfiguration process of the training data, and is mainly used for data dimensionality reduction, feature extraction, and generative learning tasks.
DAE: denoising autoencoder is a autoencoder variant that excels at extracting features from noisy inputs, revealing the underlying structure of the data and learning advanced features by reconstructing the noise-added inputs to improve network robustness, and whose robust features have a gainful effect on the downstream tasks, which contributes to improving the model generalization ability.
SDAE: stacked denoising autoencoder is a multilayer neural network structure consisting of multiple noise-reducing autoencoder layers connected in series, each of which applies noise to the input data during training and learns to reconstruct the undisturbed original features from the noisy data, thus extracting a more abstract and robust feature representation layer by layer.
DIUDA: the main feature of Dual Input Unsupervised Denoising Autoencoder is that it receives two different types of input data at the same time, and further enhances the generalization ability of the model and the understanding of the intrinsic structure of the data by fusing the two types of inputs for the joint learning and extraction of the feature representation.
In this paper, 80% of the Hepatitis C dataset is used as model training and the remaining 20% is used to test the model. Since the samples are unbalanced, this work is repeated with negative samples to ensure that the samples are balanced. For the autoencoder all methods, the learning rate is initialized to 0.001, the number of layers for both encoder and decoder are set to 3, the number of neurons for encoder is 10, 8, 5, the number of neurons for decoder is 5, 8, 10, and the MLP is initialized to 3 layers with the number of neurons 10, 8, 5, respectively, and furthermore all models are trained until convergence, with a maximum training epoch is 200. The machine learning methods all use the sklearn library, and the hyperparameters use the default parameters of the corresponding algorithms of the sklearn library.
To answer the first question, we classified the hepatitis C data after feature extraction using a modified noise-reducing auto-encoder and compared it using traditional machine learning algorithms such as SVM, KNN, and Random Forest with AE, DAE, SDAE, and DIUDA as baseline models. Each experiment was conducted 3 times to mitigate randomness. The average results for each metric are shown in Table 3.From the table, we can make the following observations.
The left figure shows the 3D visualisation of t-SNE with features extracted by DAE, and the right figure shows the 3D visualisation of t-SNE with features extracted by IDAE.
Firstly, the IDAE shows significant improvement on the hepatitis C classification task compared to the machine learning algorithms, and also outperforms almost all machine learning baseline models on all evaluation metrics. These results validate the effectiveness of our proposed improved noise-reducing autoencoder on the hepatitis C dataset. Secondly, IDAE achieves higher accuracy on the hepatitis C dataset compared to the traditional autoencoders such as AE, DAE, SDAE and DIUDA, etc., with numerical improvements of 0.011, 0.013, 0.010, 0.007, respectively. other metrics such as the AUC-ROC and F1 scores, the values are improved by 0.11, 0.10, 0.06,0.04 and 0.13, 0.11, 0.042, 0.032. From Fig. 5, it can be seen that the IDAE shows better clustering effect and class boundary differentiation in the feature representation in 3D space, and both the experimental results and visual analyses verify the advantages of the improved model in classification performance. Both experimental results and visualisation analysis verify the advantages of the improved model in classification performance.
Finally, SVM and RF outperform KNN for classification in the Hepatitis C dataset due to the fact that SVM can handle complex nonlinear relationships through radial basis function (RBF) kernels. The integrated algorithm can also integrate multiple weak learners to indirectly achieve nonlinear classification. KNN, on the other hand, is based on linear measures such as Euclidean distance to construct decision boundaries, which cannot effectively capture and express the essential laws of complex nonlinear data distributions, leading to poor classification results.
In summary, these results demonstrate the superiority of the improved noise-reducing autoencoder in feature extraction of hepatitis C data. It is also indirectly verified by the effect of machine learning that hepatitis C data features may indeed have complex nonlinear relationships.
To answer the second question, we analyze in this subsection the performance variation of different autoencoder algorithms at different depths. To perform the experiments in the constrained setting, we used a fixed learning rate of 0.001. The number of neurons in the encoder and decoder was kept constant and the number of layers added to the encoder and decoder was set to {1, 2, 3, 4, 5, 6}. Each experiment was performed 3 times and the average results are shown in Fig. 6, we make the following observations:
Effects of various types of autoencoders at different depths.
Under different layer configurations, the IDAE proposed in this study shows significant advantages over the traditional AE, DAE, SDAE and SDAE in terms of both feature extraction and classification performance. The experimental data show that the deeper the number of layers, the greater the performance improvement, when the number of layers of the encoder reaches 6 layers, the accuracy improvement effect of IDAE is 0.112, 0.103 , 0.041, 0.021 ,the improvement effect of AUC-ROC of IDAE is 0.062, 0.042, 0.034,0.034, and the improvement effect of F1 is 0.054, 0.051, 0.034,0.028 in the order of the encoder.
It is worth noting that conventional autocoders often encounter the challenges of overfitting and gradient vanishing when the network is deepened, resulting in a gradual stabilisation or even a slight decline in their performance on the hepatitis C classification task, which is largely attributed to the excessive complexity and gradient vanishing problems caused by the over-deep network structure, which restrict the model from finding the optimal solution. The improved version of DAE introduces residual neural network, which optimises the information flow between layers and solves the gradient vanishing problem in deep learning by introducing directly connected paths, and balances the model complexity and generalisation ability by flexibly expanding the depth and width of the network. Experimental results show that the improved DAE further improves the classification performance with appropriate increase in network depth, and alleviates the overfitting problem at the same depth. Taken together, the experimental results reveal that the improved DAE does mitigate the risk of overfitting at the same depth as the number of network layers deepens, and also outperforms other autoencoders in various metrics.
To answer the third question, in this subsection we analyse the speed of model convergence for different autoencoder algorithms. The experiments were also performed by setting the number of layers added to the encoder and decoder to {3, 6}, with the same number of neurons in each layer, and performing each experiment three times, with the average results shown in Fig. 7, where we observe the following conclusions: The convergence speed of the IDAE is better than the other autoencoder at different depths again. Especially, the contrast is more obvious at deeper layers. This is due to the fact that the chain rule leads to gradient vanishing and overfitting problems, and its convergence speed will have a decreasing trend; whereas the IDAE adds direct paths between layers by incorporating techniques such as residual connectivity, which allows the signal to bypass the nonlinear transforms of some layers and propagate directly to the later layers. This design effectively mitigates the problem of gradient vanishing as the depth of the network increases, allowing the network to maintain a high gradient flow rate during training, and still maintain a fast convergence speed even when the depth increases. In summary, when dealing with complex and high-dimensional data such as hepatitis C-related data, the IDAE is able to learn and extract features better by continuously increasing the depth energy, which improves the model training efficiency and overall performance.
Comparison of model convergence speed for different layers of autoencoders.
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]