Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C … – Nature.com
In this subsection, we evaluate the feature extraction effect of the IDAE by conducting experiments on the Hepatitis C dataset with different configurations to test its generalization ability. We would like to investigate the following two questions:
How effective is IDAE in classifying the characteristics of hepatitis C ?
If the depth of the neural network is increased, can IDAE mitigate the gradient explosion or gradient vanishing problem while improving the classification of hepatitis C disease ?
Does an IDAE of the same depth tend to converge more easily than other encoders on the hepatitis C dataset ?
Firstly, out of public health importance, Hepatitis C (HCV) is a global public health problem due to the fact that its chronic infection may lead to serious consequences such as cirrhosis and liver cancer, and Hepatitis C is highly insidious, leading to a large number of undiagnosed cases.It is worth noting that despite the wide application of traditional machine learning and deep learning algorithms in the healthcare field, especially in the research of acute conditions such as cancer, however, there is a significant lack of in-depth exploration of chronic infectious diseases, such as hepatitis C. In addition, the complex biological attributes of the hepatitis C virus and the significant individual differences among patients together give rise to the challenge of multilevel nonlinear correlation among features. Therefore, the application of deep learning methods to the hepatitis C dataset is not only an important way to validate the efficacy of such algorithms, but also an urgent research direction that needs to be put into practice to fill the existing research gaps.
The Helmholtz Center for Infection Research, the Institute of Clinical Chemistry at the Medical University of Hannover, and other research organizations provided data on people with hepatitis C, which was used to compile the information in this article. The collection includes demographic data, such as age, as well as test results for blood donors and hepatitis C patients. By examining the dataset, we can see that the primary features are the quantity of different blood components and liver function, and that the only categorical feature in the dataset is gender. Table 1 shows the precise definition of these fields.
This essay investigates the categorisation issue. The Table 2 lists the description and sample size of the five main classification labels. In the next training, in order to address the effect of sample imbalance on the classification effect, the model will be first smote32 sampled and then trained using the smote sampled samples. With a sample size of 400 for each classification.
The aim of this paper is to investigate whether IDAE can extract more representative and robust features, and we have chosen a baseline model that includes both traditional machine learning algorithms and various types of autoencoders, which will be described in more detail below:
SVM: support vector machines are used to achieve optimal classification of data by constructing maximally spaced classification hyperplanes and use kernel functions to deal with nonlinear problems, aiming to seek to identify decision boundaries that maximize spacing in the training data.
KNN: the K Nearest Neighbors algorithm determines the class or predictive value of a new sample by calculating its distance from each sample in the training set through its K nearest neighbors.
RF: random forests utilize random feature selection and Bootstrap sampling techniques to construct and combine the prediction results of multiple decision trees to effectively handle classification and regression problems.
AE: autoencoder is a neural network structure consisting of an encoder and a decoder that learns a compact, low-dimensional feature representation of the data through a autoreconfiguration process of the training data, and is mainly used for data dimensionality reduction, feature extraction, and generative learning tasks.
DAE: denoising autoencoder is a autoencoder variant that excels at extracting features from noisy inputs, revealing the underlying structure of the data and learning advanced features by reconstructing the noise-added inputs to improve network robustness, and whose robust features have a gainful effect on the downstream tasks, which contributes to improving the model generalization ability.
SDAE: stacked denoising autoencoder is a multilayer neural network structure consisting of multiple noise-reducing autoencoder layers connected in series, each of which applies noise to the input data during training and learns to reconstruct the undisturbed original features from the noisy data, thus extracting a more abstract and robust feature representation layer by layer.
DIUDA: the main feature of Dual Input Unsupervised Denoising Autoencoder is that it receives two different types of input data at the same time, and further enhances the generalization ability of the model and the understanding of the intrinsic structure of the data by fusing the two types of inputs for the joint learning and extraction of the feature representation.
In this paper, 80% of the Hepatitis C dataset is used as model training and the remaining 20% is used to test the model. Since the samples are unbalanced, this work is repeated with negative samples to ensure that the samples are balanced. For the autoencoder all methods, the learning rate is initialized to 0.001, the number of layers for both encoder and decoder are set to 3, the number of neurons for encoder is 10, 8, 5, the number of neurons for decoder is 5, 8, 10, and the MLP is initialized to 3 layers with the number of neurons 10, 8, 5, respectively, and furthermore all models are trained until convergence, with a maximum training epoch is 200. The machine learning methods all use the sklearn library, and the hyperparameters use the default parameters of the corresponding algorithms of the sklearn library.
To answer the first question, we classified the hepatitis C data after feature extraction using a modified noise-reducing auto-encoder and compared it using traditional machine learning algorithms such as SVM, KNN, and Random Forest with AE, DAE, SDAE, and DIUDA as baseline models. Each experiment was conducted 3 times to mitigate randomness. The average results for each metric are shown in Table 3.From the table, we can make the following observations.
The left figure shows the 3D visualisation of t-SNE with features extracted by DAE, and the right figure shows the 3D visualisation of t-SNE with features extracted by IDAE.
Firstly, the IDAE shows significant improvement on the hepatitis C classification task compared to the machine learning algorithms, and also outperforms almost all machine learning baseline models on all evaluation metrics. These results validate the effectiveness of our proposed improved noise-reducing autoencoder on the hepatitis C dataset. Secondly, IDAE achieves higher accuracy on the hepatitis C dataset compared to the traditional autoencoders such as AE, DAE, SDAE and DIUDA, etc., with numerical improvements of 0.011, 0.013, 0.010, 0.007, respectively. other metrics such as the AUC-ROC and F1 scores, the values are improved by 0.11, 0.10, 0.06,0.04 and 0.13, 0.11, 0.042, 0.032. From Fig. 5, it can be seen that the IDAE shows better clustering effect and class boundary differentiation in the feature representation in 3D space, and both the experimental results and visual analyses verify the advantages of the improved model in classification performance. Both experimental results and visualisation analysis verify the advantages of the improved model in classification performance.
Finally, SVM and RF outperform KNN for classification in the Hepatitis C dataset due to the fact that SVM can handle complex nonlinear relationships through radial basis function (RBF) kernels. The integrated algorithm can also integrate multiple weak learners to indirectly achieve nonlinear classification. KNN, on the other hand, is based on linear measures such as Euclidean distance to construct decision boundaries, which cannot effectively capture and express the essential laws of complex nonlinear data distributions, leading to poor classification results.
In summary, these results demonstrate the superiority of the improved noise-reducing autoencoder in feature extraction of hepatitis C data. It is also indirectly verified by the effect of machine learning that hepatitis C data features may indeed have complex nonlinear relationships.
To answer the second question, we analyze in this subsection the performance variation of different autoencoder algorithms at different depths. To perform the experiments in the constrained setting, we used a fixed learning rate of 0.001. The number of neurons in the encoder and decoder was kept constant and the number of layers added to the encoder and decoder was set to {1, 2, 3, 4, 5, 6}. Each experiment was performed 3 times and the average results are shown in Fig. 6, we make the following observations:
Effects of various types of autoencoders at different depths.
Under different layer configurations, the IDAE proposed in this study shows significant advantages over the traditional AE, DAE, SDAE and SDAE in terms of both feature extraction and classification performance. The experimental data show that the deeper the number of layers, the greater the performance improvement, when the number of layers of the encoder reaches 6 layers, the accuracy improvement effect of IDAE is 0.112, 0.103 , 0.041, 0.021 ,the improvement effect of AUC-ROC of IDAE is 0.062, 0.042, 0.034,0.034, and the improvement effect of F1 is 0.054, 0.051, 0.034,0.028 in the order of the encoder.
It is worth noting that conventional autocoders often encounter the challenges of overfitting and gradient vanishing when the network is deepened, resulting in a gradual stabilisation or even a slight decline in their performance on the hepatitis C classification task, which is largely attributed to the excessive complexity and gradient vanishing problems caused by the over-deep network structure, which restrict the model from finding the optimal solution. The improved version of DAE introduces residual neural network, which optimises the information flow between layers and solves the gradient vanishing problem in deep learning by introducing directly connected paths, and balances the model complexity and generalisation ability by flexibly expanding the depth and width of the network. Experimental results show that the improved DAE further improves the classification performance with appropriate increase in network depth, and alleviates the overfitting problem at the same depth. Taken together, the experimental results reveal that the improved DAE does mitigate the risk of overfitting at the same depth as the number of network layers deepens, and also outperforms other autoencoders in various metrics.
To answer the third question, in this subsection we analyse the speed of model convergence for different autoencoder algorithms. The experiments were also performed by setting the number of layers added to the encoder and decoder to {3, 6}, with the same number of neurons in each layer, and performing each experiment three times, with the average results shown in Fig. 7, where we observe the following conclusions: The convergence speed of the IDAE is better than the other autoencoder at different depths again. Especially, the contrast is more obvious at deeper layers. This is due to the fact that the chain rule leads to gradient vanishing and overfitting problems, and its convergence speed will have a decreasing trend; whereas the IDAE adds direct paths between layers by incorporating techniques such as residual connectivity, which allows the signal to bypass the nonlinear transforms of some layers and propagate directly to the later layers. This design effectively mitigates the problem of gradient vanishing as the depth of the network increases, allowing the network to maintain a high gradient flow rate during training, and still maintain a fast convergence speed even when the depth increases. In summary, when dealing with complex and high-dimensional data such as hepatitis C-related data, the IDAE is able to learn and extract features better by continuously increasing the depth energy, which improves the model training efficiency and overall performance.
Comparison of model convergence speed for different layers of autoencoders.
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]