Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C … – Nature.com
In this subsection, we evaluate the feature extraction effect of the IDAE by conducting experiments on the Hepatitis C dataset with different configurations to test its generalization ability. We would like to investigate the following two questions:
How effective is IDAE in classifying the characteristics of hepatitis C ?
If the depth of the neural network is increased, can IDAE mitigate the gradient explosion or gradient vanishing problem while improving the classification of hepatitis C disease ?
Does an IDAE of the same depth tend to converge more easily than other encoders on the hepatitis C dataset ?
Firstly, out of public health importance, Hepatitis C (HCV) is a global public health problem due to the fact that its chronic infection may lead to serious consequences such as cirrhosis and liver cancer, and Hepatitis C is highly insidious, leading to a large number of undiagnosed cases.It is worth noting that despite the wide application of traditional machine learning and deep learning algorithms in the healthcare field, especially in the research of acute conditions such as cancer, however, there is a significant lack of in-depth exploration of chronic infectious diseases, such as hepatitis C. In addition, the complex biological attributes of the hepatitis C virus and the significant individual differences among patients together give rise to the challenge of multilevel nonlinear correlation among features. Therefore, the application of deep learning methods to the hepatitis C dataset is not only an important way to validate the efficacy of such algorithms, but also an urgent research direction that needs to be put into practice to fill the existing research gaps.
The Helmholtz Center for Infection Research, the Institute of Clinical Chemistry at the Medical University of Hannover, and other research organizations provided data on people with hepatitis C, which was used to compile the information in this article. The collection includes demographic data, such as age, as well as test results for blood donors and hepatitis C patients. By examining the dataset, we can see that the primary features are the quantity of different blood components and liver function, and that the only categorical feature in the dataset is gender. Table 1 shows the precise definition of these fields.
This essay investigates the categorisation issue. The Table 2 lists the description and sample size of the five main classification labels. In the next training, in order to address the effect of sample imbalance on the classification effect, the model will be first smote32 sampled and then trained using the smote sampled samples. With a sample size of 400 for each classification.
The aim of this paper is to investigate whether IDAE can extract more representative and robust features, and we have chosen a baseline model that includes both traditional machine learning algorithms and various types of autoencoders, which will be described in more detail below:
SVM: support vector machines are used to achieve optimal classification of data by constructing maximally spaced classification hyperplanes and use kernel functions to deal with nonlinear problems, aiming to seek to identify decision boundaries that maximize spacing in the training data.
KNN: the K Nearest Neighbors algorithm determines the class or predictive value of a new sample by calculating its distance from each sample in the training set through its K nearest neighbors.
RF: random forests utilize random feature selection and Bootstrap sampling techniques to construct and combine the prediction results of multiple decision trees to effectively handle classification and regression problems.
AE: autoencoder is a neural network structure consisting of an encoder and a decoder that learns a compact, low-dimensional feature representation of the data through a autoreconfiguration process of the training data, and is mainly used for data dimensionality reduction, feature extraction, and generative learning tasks.
DAE: denoising autoencoder is a autoencoder variant that excels at extracting features from noisy inputs, revealing the underlying structure of the data and learning advanced features by reconstructing the noise-added inputs to improve network robustness, and whose robust features have a gainful effect on the downstream tasks, which contributes to improving the model generalization ability.
SDAE: stacked denoising autoencoder is a multilayer neural network structure consisting of multiple noise-reducing autoencoder layers connected in series, each of which applies noise to the input data during training and learns to reconstruct the undisturbed original features from the noisy data, thus extracting a more abstract and robust feature representation layer by layer.
DIUDA: the main feature of Dual Input Unsupervised Denoising Autoencoder is that it receives two different types of input data at the same time, and further enhances the generalization ability of the model and the understanding of the intrinsic structure of the data by fusing the two types of inputs for the joint learning and extraction of the feature representation.
In this paper, 80% of the Hepatitis C dataset is used as model training and the remaining 20% is used to test the model. Since the samples are unbalanced, this work is repeated with negative samples to ensure that the samples are balanced. For the autoencoder all methods, the learning rate is initialized to 0.001, the number of layers for both encoder and decoder are set to 3, the number of neurons for encoder is 10, 8, 5, the number of neurons for decoder is 5, 8, 10, and the MLP is initialized to 3 layers with the number of neurons 10, 8, 5, respectively, and furthermore all models are trained until convergence, with a maximum training epoch is 200. The machine learning methods all use the sklearn library, and the hyperparameters use the default parameters of the corresponding algorithms of the sklearn library.
To answer the first question, we classified the hepatitis C data after feature extraction using a modified noise-reducing auto-encoder and compared it using traditional machine learning algorithms such as SVM, KNN, and Random Forest with AE, DAE, SDAE, and DIUDA as baseline models. Each experiment was conducted 3 times to mitigate randomness. The average results for each metric are shown in Table 3.From the table, we can make the following observations.
The left figure shows the 3D visualisation of t-SNE with features extracted by DAE, and the right figure shows the 3D visualisation of t-SNE with features extracted by IDAE.
Firstly, the IDAE shows significant improvement on the hepatitis C classification task compared to the machine learning algorithms, and also outperforms almost all machine learning baseline models on all evaluation metrics. These results validate the effectiveness of our proposed improved noise-reducing autoencoder on the hepatitis C dataset. Secondly, IDAE achieves higher accuracy on the hepatitis C dataset compared to the traditional autoencoders such as AE, DAE, SDAE and DIUDA, etc., with numerical improvements of 0.011, 0.013, 0.010, 0.007, respectively. other metrics such as the AUC-ROC and F1 scores, the values are improved by 0.11, 0.10, 0.06,0.04 and 0.13, 0.11, 0.042, 0.032. From Fig. 5, it can be seen that the IDAE shows better clustering effect and class boundary differentiation in the feature representation in 3D space, and both the experimental results and visual analyses verify the advantages of the improved model in classification performance. Both experimental results and visualisation analysis verify the advantages of the improved model in classification performance.
Finally, SVM and RF outperform KNN for classification in the Hepatitis C dataset due to the fact that SVM can handle complex nonlinear relationships through radial basis function (RBF) kernels. The integrated algorithm can also integrate multiple weak learners to indirectly achieve nonlinear classification. KNN, on the other hand, is based on linear measures such as Euclidean distance to construct decision boundaries, which cannot effectively capture and express the essential laws of complex nonlinear data distributions, leading to poor classification results.
In summary, these results demonstrate the superiority of the improved noise-reducing autoencoder in feature extraction of hepatitis C data. It is also indirectly verified by the effect of machine learning that hepatitis C data features may indeed have complex nonlinear relationships.
To answer the second question, we analyze in this subsection the performance variation of different autoencoder algorithms at different depths. To perform the experiments in the constrained setting, we used a fixed learning rate of 0.001. The number of neurons in the encoder and decoder was kept constant and the number of layers added to the encoder and decoder was set to {1, 2, 3, 4, 5, 6}. Each experiment was performed 3 times and the average results are shown in Fig. 6, we make the following observations:
Effects of various types of autoencoders at different depths.
Under different layer configurations, the IDAE proposed in this study shows significant advantages over the traditional AE, DAE, SDAE and SDAE in terms of both feature extraction and classification performance. The experimental data show that the deeper the number of layers, the greater the performance improvement, when the number of layers of the encoder reaches 6 layers, the accuracy improvement effect of IDAE is 0.112, 0.103 , 0.041, 0.021 ,the improvement effect of AUC-ROC of IDAE is 0.062, 0.042, 0.034,0.034, and the improvement effect of F1 is 0.054, 0.051, 0.034,0.028 in the order of the encoder.
It is worth noting that conventional autocoders often encounter the challenges of overfitting and gradient vanishing when the network is deepened, resulting in a gradual stabilisation or even a slight decline in their performance on the hepatitis C classification task, which is largely attributed to the excessive complexity and gradient vanishing problems caused by the over-deep network structure, which restrict the model from finding the optimal solution. The improved version of DAE introduces residual neural network, which optimises the information flow between layers and solves the gradient vanishing problem in deep learning by introducing directly connected paths, and balances the model complexity and generalisation ability by flexibly expanding the depth and width of the network. Experimental results show that the improved DAE further improves the classification performance with appropriate increase in network depth, and alleviates the overfitting problem at the same depth. Taken together, the experimental results reveal that the improved DAE does mitigate the risk of overfitting at the same depth as the number of network layers deepens, and also outperforms other autoencoders in various metrics.
To answer the third question, in this subsection we analyse the speed of model convergence for different autoencoder algorithms. The experiments were also performed by setting the number of layers added to the encoder and decoder to {3, 6}, with the same number of neurons in each layer, and performing each experiment three times, with the average results shown in Fig. 7, where we observe the following conclusions: The convergence speed of the IDAE is better than the other autoencoder at different depths again. Especially, the contrast is more obvious at deeper layers. This is due to the fact that the chain rule leads to gradient vanishing and overfitting problems, and its convergence speed will have a decreasing trend; whereas the IDAE adds direct paths between layers by incorporating techniques such as residual connectivity, which allows the signal to bypass the nonlinear transforms of some layers and propagate directly to the later layers. This design effectively mitigates the problem of gradient vanishing as the depth of the network increases, allowing the network to maintain a high gradient flow rate during training, and still maintain a fast convergence speed even when the depth increases. In summary, when dealing with complex and high-dimensional data such as hepatitis C-related data, the IDAE is able to learn and extract features better by continuously increasing the depth energy, which improves the model training efficiency and overall performance.
Comparison of model convergence speed for different layers of autoencoders.
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]
- Yielding insights: Machine learning driven imputations to fill in agricultural data gaps in surveys - World Bank - February 11th, 2025 [February 11th, 2025]
- SKUtrak Promote tool taps machine learning powered analysis to shake up way brands run promotions - Retail Technology Innovation Hub - February 11th, 2025 [February 11th, 2025]
- Machine learning approaches for resilient modulus modeling of cement-stabilized magnetite and hematite iron ore tailings - Nature.com - February 11th, 2025 [February 11th, 2025]
- The Alignment Problem: Machine Learning and Human Values - Harvard Gazette - February 11th, 2025 [February 11th, 2025]
- Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data - Nature.com - February 11th, 2025 [February 11th, 2025]
- Analyzing the influence of manufactured sand and fly ash on concrete strength through experimental and machine learning methods - Nature.com - February 11th, 2025 [February 11th, 2025]
- Machine learning prediction of glaucoma by heavy metal exposure: results from the National Health and Nutrition Examination Survey 2005 to 2008 -... - February 11th, 2025 [February 11th, 2025]
- Correlation of rivaroxaban solubility in mixed solvents for optimization of solubility using machine learning analysis and validation - Nature.com - February 11th, 2025 [February 11th, 2025]
- Characterisation of cardiovascular disease (CVD) incidence and machine learning risk prediction in middle-aged and elderly populations: data from the... - February 11th, 2025 [February 11th, 2025]
- Unlock the Secrets of AI: How Mohit Pandey Makes Machine Learning Fun! - Mi Valle - February 11th, 2025 [February 11th, 2025]