Is Machine Learning The Key To Unlocking Gen Z Engagement? A Discussion With Jonathan Jadali Of Ascend – Forbes
Jonathan Jadali, Founder and CEO of Ascend
The jury is still out on what makes Gen Zers tick, but while the research is still ongoing there is much evidence to suggest that a marketing strategy utilizing machine learning is exponentially more effective with the next generation.
One thing is abundantly clear to every marketer worth his salt; Gen Z customers are "ninja-level" efficient at swatting away regular ads and pop-ups. They are strongly immune to hard sales and obvious sales content.
Despite all the difficulties that marketers are facing in reaching a wide Gen Z audience, Jonathan Jadali, CEO and Founder at Ascend Agency has found great success in leading Gen Z-focused startups to victory in this marketing struggle.
So what makes the typical Gen Z customer tick and how can businesses and startups build a brand that is appealing to them, utilizing cutting edge technologies?
Jadali shares the ways in which he has used a data and machine-learning strategy in getting many of his clients from obscurity to domination of the Gen Z market.
Content, as they say, is king, but the wrong kind of content isnt even fit to be a pawn in this game. To get startups headed in the right direction, Jonathan often helps direct his clients at Ascend Agency on creating the right type of content for the right type of client.
While most brands are focused on putting out well-curated video and image content in a bid to drive engagement on their social media platforms, Jadali advises that this might not be the best way to go if Gen Zers are your target audience.
The ideal Gen Z customer thrives on spontaneous and messy content. As Jadali states, Gen Z customers are all about being realthey connect well with unfiltered and unedited content because it tends to feel less salesy than others.
For instance, a makeup brand is better off posting a video of a makeup session, in front of a cluttered vanity table, than a photoshoot with a perfectly made-up face.
This is important to keep in mind when implementing any machine learning into your marketing strategy. Whether you are creating a chat bot, or building a data-driven marketing campaign - its important that your system learns to be imperfect.
When AI or Machine Learning is used in marketing, sometimes it can come off as, well, robotic. Gen Z will be an important moment for machine learning marketing as it will help us get closer to contextual AI - machines that more accurately predict and reflect human behavior.
Gen Z wants to see the messiness of life and its process reflected in your content. Brands that do this, are the brands that they are drawn to and often build loyalty for.
How does it look? How effective is it? How satisfying is your service? All these are valid marketing questions and things that in the past had been asked by your millennial customer base.
According to Jadali, these questions do not matter nearly as much to a Gen Z audience.
Clearly, customers want products that work and businesses that deliver, but with a Gen Z audience, that doesnt seem to be the right way to lead in marketing to them.
Having worked with both Fortune 500 companies and smaller startups alike in the last 3 years since Ascend Agency launched, Jadali is fairly certain that Gen Z customers are way more attracted to how your business makes them feel.
This is where machine learning can really come in handy. Understanding your customers' moods and habits can help you tap into what makes them feel great about themselves and the products in their lives.
Gen Z customers are tired of hearing about how amazing your product is, businesses have been hyping up their products for as long as businesses have existed and Gen Zers arent having any more of it. In Jonathans words, Sell experiences, not products, and your products will head out of your door as well.
According to Mention, 25% of what you sell is your product. The additional 75% is the intangible feeling that comes with said product.
What dominant feeling do you want to evoke with your content? A question that is popularly asked at the Ascend Agency office, is one that has helped brands build consistency in their content style and delivery and that has brought the Gen Z customers in their droves.
This question can be answered through aggregated customer data that helps you better understand the emotions from brands that they also engage with.
Red Bull is a great example of a brand that utilizes data and machine learning in this manner. Their video content covers high-risk sports, like Skydiving, Bungee jumping, etc. From customer data processed by predictive analytics and machine learning systems, the dominant feeling Red Bull chose to evoke is one of courage and strength.
What is yours, Happiness, Reflection, or Prestige? The sooner you can answer that, the sooner you can get your gen Z audience to really pay attention. Machine learning can help you answer this question faster and more accurately.
Did you know that once an Influencers followership crosses the 100k mark, their engagement drops drastically? When did you last get an Instagram reply from Selena Gomez or Christiano Ronaldo? Never I presume. I will get back to this point in a bit.
While Guest Posting and proper ad placement might still work rather well for Millennials, Social media is clearly the major frontier for Gen Zers. This is why Influencer Marketing has risen to the fore in the last 6 years.
However, nothing is more important to this generation than being seen and heard. This is why Gen Z customers rate a brands authenticity by how well the brands engage with them online.
If a customer posts a tweet asking you for information or laying down a complaint, the first thing to do is to respond publicly before directing to their inbox as opposed to solely responding to them privately. If they send in a review, respond and thank them. Call them by name, engage with them personally in a way that doesnt feel rehearsed, says Jadali.
It goes without saying that brands should be more intentional with engaging their Gen Z audience personally. However, this is hard to scale.
Machine learning is helping brands go beyond the typical automated response we often see in DM and SMS replies. As this technology becomes more advanced, you will be able to engage with hundreds of thousands of customers at once at a deeply personal level.
Micro-influencers drive 60% higher engagement levels and 22.2% more weekly conversions coupled with the fact that they are considerably cheaper. However, their secret sauce is the fact that they are still able to engage with their followers directly far more than celebrities like Cristiano Ronaldo or Selena Gomez ever can.
Soon, machine learning will allow for this type of personal engagement at scale. It will also allow for small brands and businesses to authentically engage with customers without having to spend hours of their day on replies and comments.
As Jadali explains, The Gen Z audience is sensitive, intuitive and versatile, reaching them is not rocket science, it is not science at all, it is an art. It is something that anyone can master, wield and utilize.
Gen Z will help push Machine Learning to become more human, more perfectly imperfect in its responses, and move us closer to contextual AI in marketing and online content.
See the original post here:
Is Machine Learning The Key To Unlocking Gen Z Engagement? A Discussion With Jonathan Jadali Of Ascend - Forbes
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]