Machine Learning and Life-and-Death Decisions on the Battlefield – War on the Rocks
In 1946 the New York Times revealed one of World War IIs top secrets an amazing machine which applies electronic speeds for the first time to mathematical tasks hitherto too difficult and cumbersome for solution. One of the machines creators offered that its purpose was to replace, as far as possible, the human brain. While this early version of a computer did not replace the human brain, it did usher in a new era in which, according to the historian Jill Lepore, technological change wildly outpaced the human capacity for moral reckoning.
That era continues with the application of machine learning to questions of command and control. The application of machine learning is in some areas already a reality the U.S. Air Force, for example, has used it as a working aircrew member on a military aircraft, and the U.S. Army is using it to choose the right shooter for a target identified by an overhead sensor. The military is making strides toward using machine learning algorithms to direct robotic systems, analyze large sets of data, forecast threats, and shape strategy. Using algorithms in these areas and others offers awesome military opportunities from saving person-hours in planning to outperforming human pilots in dogfights to using a multihypothesis semantic engine to improve our understanding of global events and trends. Yet with the opportunity of machine learning comes ethical risk the military could surrender life-and-death choice to algorithms, and surrendering choice abdicates ones status as a moral actor.
So far, the debate about algorithms role in battlefield choice has been eitheror: Either algorithms should make life-and-death choices because there is no other way to keep pace on an increasingly autonomous battlefield, or humans should make life-and-death choices because there is no other way to maintain moral standing in war. This is a false dichotomy. Choice is not a unitary thing to be handed over either to algorithms or to people. At all levels of decision-making (i.e., tactical, operational, and strategic), choice is the result of a several-step process. The question is not whether algorithms or humans should make life-and-death choices, but rather which steps in the process each should be responsible for. By breaking choice into its constituent parts and training servicemembers in decision science the military can both increase decision speed and maintain moral standing. This article proposes how it can do both. It describes the constituent components of a choice, then discusses which of those components should be performed by machine learning algorithms and which require human input.
What Decisions Are and What It Takes To Make Them
Consider a fighter pilot hunting surface-to-air missiles. When the pilot attacks, she is determining that her choice, relative to other possibilities before her, maximizes expected net benefit, or utility. She may not consciously process the decision in these terms and may not make the calculation perfectly, but she is nonetheless determining which decision optimizes expected costs and benefits. To be clear, the example of the fighter pilot is not meant to bound the discussion. The basic conceptual process is the same whether the decision-makers are trigger-pullers on the front lines or commanders in distant operations centers. The scope and particulars of a decision change at higher levels of responsibility, of course, from risking one unit to many, or risking one bystanders life to risking hundreds. Regardless of where the decision-maker sits or rather where the authority to choose to employ force lawfully resides choice requires the same four fundamental steps.
The first step is to list the alternatives available to the decision-maker. The fighter pilot, again just for example, might have two alternatives: attack the missile system from a relatively safer long-range approach, or attack from closer range with more risk but a higher probability of a successful attack. The second step is to take each of these alternatives and define the relevant possible results. In this case, the pilots relevant outcomes might include killing the missile while surviving, killing the missile without surviving, failing to kill the system but surviving, and, lastly, failing to kill the missile while also failing to survive.
The third step is to make a conditional probability estimate, or an estimate of the likelihood of each result assuming a given alternative. If the pilot goes in close, what is the probability that she kills the missile and survives? What is the same probability for the attack from long range? And so on for each outcome of each alternative.
So far the pilot has determined what she can do, what may happen as a result, and how likely each result is. She now needs to say how much she values each result. To do this she needs to identify how much she cares about each dimension of value at play in the choice, which in highly simplified terms are the benefit to mission that comes from killing the missile, and the cost that comes from sacrificing her life, the lives of targeted combatants, and the lives of bystanders. It is not enough to say that killing the missile is beneficial and sacrificing life is costly. She needs to put benefit and cost into a single common metric, sometimes called a utility, so that the value of one can be directly compared to the value of the other. This relative comparison is known as a value trade-off, the fourth step in the process. Whether the decision-maker is on the tactical edge or making high-level decisions, the trade-off takes the same basic form: The decision-maker weighs the value of attaining a military objective against the cost of dollars and lives (friendly, enemy, and civilian) needed to attain it. This trade-off is at once an ethical and a military judgment it puts a price on life at the same time that it puts a price on a military objective.
Once these four steps are complete, rational choice is a matter of fairly simple math. Utilities are weighted by an outcomes likelihood high-likelihood outcomes get more weight and are more likely to drive the final choice.
It is important to note that, for both human and machine decision-makers, rational is not necessarily the same thing as ethical or successful. The rational choice process is the best way, given uncertainty, to optimize what decision-makers say they value. It is not a way of saying that one has the right values and does not guarantee a good outcome. Good decisions will still occasionally lead to bad outcomes, but this decision-making process optimizes results in the long run.
At least in the U.S. Air Force, pilots do not consciously step through expected utility calculations in the cockpit. Nor is it reasonable to assume that they should performing the mission is challenging enough. For human decision-makers, explicitly working through the steps of expected utility calculations is impractical, at least on a battlefield. Its a different story, however, with machines. If the military wants to use algorithms to achieve decision speed in battle, then it needs to make the components of a decision computationally tractable that is, the four steps above need to reduce to numbers. The question becomes whether it is possible to provide the numbers in such a way that combines the speed that machines can bring with the ethical judgment that only humans can provide.
Where Algorithms Are Better and Where Human Judgment Is Necessary
Computer and data science have a long way to go to exercise the power of machine learning and data representation assumed here. The Department of Defense should continue to invest heavily in the research and development of modeling and simulation capabilities. However, as it does that, we propose that algorithms list the alternatives, define the relevant possible results, and give conditional probability estimates (the first three steps of rational decision-making), with occasional human inputs. The fourth step of determining value should remain the exclusive domain of human judgment.
Machines should generate alternatives and outcomes because they are best suited for the complexity and rule-based processing that those steps require. In the simplified example above there were only two possible alternatives (attack from close or far) with four possible outcomes (kill the missile and survive, kill the missile and dont survive, dont kill the missile and survive, and dont kill the missile and dont survive). The reality of future combat will, of course, be far more complicated. Machines will be better suited for handling this complexity, exploring numerous solutions, and illuminating options that warfighters may not have considered. This is not to suggest, though, that humans will play no role in these steps. Machines will need to make assumptions and pick starting points when generating alternatives and outcomes, and it is here that human creativity and imagination can help add value.
Machines are hands-down better suited for the third step estimating the probabilities of different outcomes. Human judgments of probability tend to rely on heuristics, such as how available examples are in memory, rather than more accurate indicators like relevant base rates, or how often a given event has historically occurred. People are even worse when it comes to understanding probabilities for a chain of events. Even a relatively simple combination of two conditional probabilities is beyond the reach of most people. There may be openings for human input when unrepresentative training data encodes bias into the resulting algorithms, something humans are better equipped to recognize and correct. But even then, the departures should be marginal, rather than the complete abandonment of algorithmic estimates in favor of intuition. Probability, like long division, is an arena best left to machines.
While machines take the lead with occasional human input in steps one through three, the opposite is true for the fourth step of making value trade-offs. This is because value trade-offs capture both ethical and military complexity, as many commanders already know. Even with perfect information (e.g., the mission will succeed but it will cost the pilots life) commanders can still find themselves torn over which decision to make. Indeed, whether and how one should make such trade-offs is the essence of ethical theories like deontology or consequentialism. And prioritization of which military objectives will most efficiently lead to success (however defined) is an always-contentious and critical part of military planning.
As long as commanders and operators remain responsible for trade-offs, they can maintain control and responsibility for the ethicality of the decision even as they become less involved in the other components of the decision process. Of note, this control and responsibility can be built into the utility function in advance, allowing systems to execute at machine speed when necessary.
A Way Forward
Incorporating machine learning and AI into military decision-making processes will be far from easy, but it is possible and a military necessity. China and Russia are using machine learning to speed their own decision-making, and unless the United States keeps pace it risks finding itself at a serious disadvantage on future battlefields.
The military can ensure the success of machine-aided choice by ensuring that the appropriate division of labor between human and machines is well understood by both decision-makers and technology developers.
The military should begin by expanding developmental education programs so that they rigorously and repeatedly cover decision science, something the Air Force has started to do in its Pinnacle sessions, its executive education program for two- and three-star generals. Military decision-makers should learn the steps outlined above, and also learn to recognize and control for inherent biases, which can shape a decision as long as there is room for human input. Decades of decision science research have shown that intuitive decision-making is replete with systematic biases like overconfidence, irrational attention to sunk costs, and changes in risk preference based merely on how a choice is framed. These biases are not restricted just to people. Algorithms can show them as well when training data reflects biases typical of people. Even when algorithms and people split responsibility for decisions, good decision-making requires awareness of and a willingness to combat the influence of bias.
The military should also require technology developers to address ethics and accountability. Developers should be able to show that algorithmically generated lists of alternatives, results, and probability estimates are not biased in such a way as to favor wanton destruction. Further, any system addressing targeting, or the pairing of military objectives with possible means of affecting those objectives, should be able to demonstrate a clear line of accountability to a decision-maker responsible for the use of force. One means of doing so is to design machine learning-enabled systems around the decision-making model outlined in this article, which maintains accountability of human decision-makers through their enumerated values. To achieve this, commanders should insist on retaining the ability to tailor value inputs. Unless input opportunities are intuitive, commanders and troops will revert to simpler, combat-tested tools with which they are more comfortable the same old radios or weapons or, for decision purposes, slide decks. Developers can help make probability estimates more intuitive by providing them in visual form. Likewise, they can make value trade-offs more intuitive by presenting different hypothetical (but realistic) choices to assist decision-makers in refining their value judgements.
The unenviable task of commanders is to imagine a number of potential outcomes given their particular context and assign a numerical score or utility such that meaningful comparisons can be made between them. For example, a commander might place a value of 1,000 points on the destruction of an enemy aircraft carrier and -500 points on the loss of a fighter jet. If this is an accurate reflection of the commanders values, she should be indifferent between an attack with no fighter losses and one enemy carrier destroyed and one that destroys two carriers but costs her two fighters. Both are valued equally at 1,000 points. If the commander strongly prefers one outcome over the other, then the points should be adjusted to better reflect her actual values or else an algorithm using that point system will make choices inconsistent with the commanders values. This is just one example of how to elicit trade-offs, but the key point is that the trade-offs need to be given in precise terms.
Finally, the military should pay special attention to helping decision-makers become proficient in their roles as appraisers of value, particularly with respect to decisions focused on whose life to risk, when, and for what objective. In the command-and-control paradigm of the future, decision-makers will likely be required to document such trade-offs in explicit forms so machines can understand them (e.g., I recognize there is a 12 percent chance that you wont survive this mission, but I judge the value of the target to be worth the risk).
If decision-makers at the tactical, operational, or strategic levels are not aware of or are unwilling to pay these ethical costs, then the construct of machine-aided choice will collapse. It will either collapse because machines cannot assist human choice without explicit trade-offs, or because decision-makers and their institutions will be ethically compromised by allowing machines to obscure the tradeoffs implied by their value models. Neither are acceptable outcomes. Rather, as an institution, the military should embrace the requisite transparency that comes with the responsibility to make enumerated judgements about life and death. Paradoxically, documenting risk tolerance and value assignment may serve to increase subordinate autonomy during conflict. A major advantage of formally modeling a decision-makers value trade-offs is that it allows subordinates and potentially even autonomous machines to take action in the absence of the decision-maker. This machine-aided decision process enables decentralized execution at scale that reflects the leaders values better than even the most carefully crafted rules of engagement or commanders intent. As long as trade-offs can be tied back to a decision-maker, then ethical responsibility lies with that decision-maker.
Keeping Values Preeminent
The Electronic Numerical Integrator and Computer, now an artifact of history, was the top secret that the New York Times revealed in 1946. Though important as a machine in its own right, the computers true significance lay in its symbolism. It represented the capacity for technology to sprint ahead of decision-makers, and occasionally pull them where they did not want to go.
The military should race ahead with investment in machine learning, but with a keen eye on the primacy of commander values. If the U.S. military wishes to keep pace with China and Russia on this issue, it cannot afford to delay in developing machines designed to execute the complicated but unobjectionable components of decision-making identifying alternatives, outcomes, and probabilities. Likewise, if it wishes to maintain its moral standing in this algorithmic arms race, it should ensure that value trade-offs remain the responsibility of commanders. The U.S. militarys professional development education should also begin training decision-makers on how to most effectively maintain accountability for the straightforward but vexing components of value judgements in conflict.
We stand encouraged by the continued debate and hard discussions on how to best leverage the incredible advancement in AI, machine learning, computer vision, and like technologies to unleash the militarys most valuable weapon system, the men and women who serve in uniform. The military should take steps now to ensure that those people and their values remain the key players in warfare.
Brad DeWees is a major in the U.S. Air Force and a tactical air control party officer. He is currently the deputy chief of staff for 9th Air Force (Air Forces Central). An alumnus of the Air Force Chief of Staffs Strategic Ph.D. program, he holds a Ph.D. in decision science from Harvard University. LinkedIn.
Chris FIAT Umphres is a major in the U.S. Air Force and an F-35A pilot. An alumnus of the Air Force Chief of Staffs Strategic Ph.D. program, he holds a Ph.D. in decision science from Harvard University and a Masters in management science and engineering from Stanford University. LinkedIn.
Maddy Tung is a second lieutenant in the U.S. Air Force and an information operations officer. A Rhodes Scholar, she is completing dual degrees at the University of Oxford. She recently completed an M.Sc. in computer science and began the M.Sc. in social science of the internet. LinkedIn.
The views expressed here are the authors alone and do not necessarily reflect those of the U.S. government or any part thereof.
Image: U.S. Air Force (Photo by Staff Sgt. Sean Carnes)
See the article here:
Machine Learning and Life-and-Death Decisions on the Battlefield - War on the Rocks
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]