Machine Learning And Organizational Change At Southern California Edison – Forbes
An electrical lineman for Southern California Edison works on replacing a transformer as a whole ... [+] block is rewired. Long Beach, California. April 2014.
Analytics are typically viewed as an exercise in data, software and hardware. However, if the analytics are intended to influence decisions and actions, they are also an exercise in organizational change. Companies that dont view them as such are likely not to get much value from their analytics projects.
One organization that is pursuing analytics-based organizational change is Southern California Edison (SCE). One key focus of their activity is safety predictive analyticsunderstanding and predicting high risk work activities by the companys field employees that might lead to a life threatening and/or life altering incident causing injury or death. Safety issues, as you might expect, are fraught with organizational perilpolitics, lack of transparency, labor relations, and so forth. Even reporting a close call runs counter to typical organizational cultures. These organizational perils are a concern to SCE as well, but the company has created an approach to address them. SCE hasnt completely mastered safety predictive analytics and the requisite organizational changes, but its making great progress.
A Structure for Producing Analytical Change
Key to the success of the SCE approach is the structure of the analytical team that is addressing safety analytics. It is small, experienced, and integrated. Two of the key members of the team are Jeff Moore and Rosemary Perez, and they make a dynamic combination. Moore is a data scientist who works in the IT function; Perez works in Safety, Security, and Business Resiliency, and is a Predictive Analytics Advisor. In effect, Moore handles all the analytics and modeling activities on the project, and Perez, who has many years of experience in the field at SCE, leads the change management activities.
Steps to manage organizational change started at the beginning of the project and have persisted throughout it. One of the first objectives was to explain the model and variable insights to management. Outlining the range of possible outcomes allowed Perez and Moore to gain the support needed for a company wide deployment. Since Perez had relationships and trust in the districts, she could introduce the project concept to field management and staff without the concern about Why is Corporate here?. Perez noted that its important to be transparent when speaking with the teams. That trust has resulted in the district staffs willingness to listen and share their ideas on how best to deploy the model, to address missing variables and data, and to drive higher levels of adoption.
The team took all the time needed to get stakeholders engaged. Moore came into the project in the summer of 2018, and he was able to get a machine learning model up and running in a month or so, but presenting it, socializing it, and gaining buy-in for it took far longer. Moore and Perez met with executives of SCE in November and December of 2018. Within days of these meetings the safety model analytics project became a 2019 corporate goal for SCE. Safety was the companys number one priority, and it was willing to try innovative ideas to move it forward. For such a small team to have their work made into a corporate goal is unusual at SCE and elsewhere.
The Risk Model and its Findings
SCE now has an analytical risk-based framework, and risk scores for specific types of work activities and the context of the work. The model draws from a large data warehouse at SCE with work order data, structure characteristics, injury records, experience and training, and planning detail. All those factors were not previously linked, and there wasas is often the case with analyticsconsiderable data engineering necessary to pull together and relate the data.
The machine learning model scores activities that teams in the field perform, like setting a new pole or replacing an insulator. Each activity may be more or less dangerous depending on the time of year, day of the week, weather, crew size and composition, and so forth. Replacing a pole, for example, may be only a moderate risk task in itself, but when done on the side of a hill in the rain with a crane it becomes very high risk. Instead of generic safety messages to employees, SCE can now get much more specific by describing the risk of particular activities they perform on the job in a particular context.
As the model learns it will recommend specific approaches to reduce the risk of a job, like altering the crew mix or crew size, requiring additional management presence, using specific equipment or rigging to perform the work, or creating a longer power outage in order to do the job more slowly. The latter recommendation runs counter to the culture of not inconveniencing customers, but if the model specifically recommends it, then the teams will discuss the contributing factors as well as their years of experience to mitigate the risk before executing the work.
The project has led to several more general findings, which are of greatest interest to SCE executives. For example, management has long been interested in using data to understand changing safety risk profiles of the field teams over time as a result of increasing/decreasing workloads or as weather patterns change. While the predictive model considers more than 200 variables, the findings from the model have been summarized into the top fifteen distinct drivers of serious injury and fatality. Some shifting of variables is expected over time, but there has been great interest in better understanding the initial set of risk factors.
Deploying the Model and Needed Organizational Changes
Moore and Perez are in the early stages of deploying the model; theyve rolled it out to six of 35 districts thus far. Each district has a unique personality, and they dont want cookie-cutter answers on how to deploy in their district.
Moore, whose primary role was to create the model, said he has realized that safety analytics are not just about a model. I started out thinking it was about an algorithm, but I realized many other factors were involved in improving safety. Moore said that he gets some pressure to move on to analytics in other parts of the business, but in order to see your models come to life you have to go through this kind of process. And everyone at SCE believes the safety work is critical.
Perez, whose primary focus is change management, listed some of the organizational changes in deployment. There might be training issuesnot only on analytics, but also communication, leadership and ownership. There might be process concernshow we plan and communicate work. There may be technology concerns in using the system.
Perez also says the process of working with a district is critical. You cant just walk into a district and disrupt their work flow for no reason, she says. They want to know your purpose and your objective. We try to connect, show transparency, and build trust that we are here to help, that we are here to observe how they mitigate risk, to share our findings, and to see how the findings might be integrated into their work practices. We hope they will help us understand the complexity they face every day.
Both team members say they learn something every time they visit a district. Moore notes, You can only see the data you can see in the data warehousetime sheets, work orders, etc. But when you talk to the people who do the work, you learn a lot about how the data is created and applied. With each visit I understand the drivers better and the complexity of the work. I can also speak the language better with each district visit, and I understand the process and the equipment better as well.
With the findings from the model, Moore and Perez are beginning to work with another partner at SCEthe HR organization. It is responsible for defining work practices, training needs, standard operating procedures, and job aids. Each of these is potentially influenced by findings about safety risks, so the goal is to incorporate analytical results into the practices and procedures.
The team is already working to modify the model to incorporate new factorsone of which, not surprisingly given the situation in California, involves the risk of wildfires. Moore and Perez are also trying to create more integration of the risk scores with the work order system. They also plan to try to incorporate the risk model into other SCE business functions like Engineering, which might be able to lower the risk in the planning and construction of the electric grid. All in all, using data and analytics to improve safety is a time-consuming and multifaceted process, but what could be more important than reducing injury and fatality among SCE employees and work crews?
Read the original post:
Machine Learning And Organizational Change At Southern California Edison - Forbes
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]