Machine Learning Application in the Manufacturing Industry – IoT For All
Manufacturers, to keep up with the latest changes in technology, need to explore one of the most critical elements driving factories forward into the future: machine learning. Lets talk about the most important applications and innovations that ML technology is providing in 2022.
Machine learning is a subfield of artificial intelligence, but not all AI technologies count as machine learning. There are various other types of AI that play a role in many industries, such as robotics, natural language processing, and computer vision. If youre curious about how these technologies affect the manufacturing industry, check out our review below.
Basically, machine learning algorithms utilize training data to power an algorithm that allows the software to solve a problem. This data may come from real-time IoT sensors on a factory floor, or it may come from other methods. Machine learning has a variety of methods such as neural networks and deep learning. Neural networks imitate biological neurons to discover patterns in a dataset to solve problems. Deep learning utilizes various layers of neural networks, where the first layer utilizes raw data input and passes processed information from one layer to the next.
Lets start by imagining a box with assembly robots, IoT sensors, and other automated machinery. At one end you supply the materials necessary to complete the product; at the other end, the product rolls off the assembly line. The only intervention needed for this device is routine maintenance of the equipment inside. This is the ideal future of manufacturing, and machine learning can help us understand the full picture of how to achieve this.
Aside from the advanced robotics necessary for automated assembly to work, machine learning can help ensure: quality assurance, NDT analysis, and localizing the causes of defects, among other things.
You can think of this factory in a box example as a way of simplifying a larger factory, but in some cases its quite literal.Nokiais utilizing portable manufacturing sites in the form of retrofitted shipping containers with advanced automated assembly equipment. You can use these portable containers in any location necessary, allowing manufacturers to assemble products on site instead of needing to transport the products longer distances.
Using neural networks, high optical resolution cameras, and powerfulGPUs, real-time video processing combined with machine learning and computer vision can complete visual inspection tasks better than humans can. This technology ensures that the factory in a box is working correctly and that unusable products are eliminated from the system.
In the past, machine learnings use in video analysis has been criticized for the quality of video used. This is because images can be blurry from frame to frame, and the inspection algorithm may be subject to more errors. With high-quality cameras and greater graphical processing power, however, neural networks can more efficiently search for defects in real-time without human intervention.
Using various IoT sensors, machine learning can help test the created products without damaging them. An algorithm can search for patterns in the real-time data that correlate with a defective version of the unit, enabling the system to flag potentially unwanted products.
Another way that we can detect defects in materials is through non-destructive testing. This involves measuring a materials stability and integrity without causing damage. For example, you can use an ultrasound machine to detect anomalies like cracks in a material. The machine can measure data that humans can analyze to look for these outliers by hand.
However, outlier detection algorithms, object detection algorithms, and segmentation algorithms can automate this process by analyzing the data for recognizable patterns that humans may not be able to see with much greater efficiency. Machine learning is also not subject to the same number of errors that humans are prone to make.
One of the core tenants of machine learnings role in manufacturing is predictive maintenance. PwCreportedthat predictive maintenance will be one of the largest growing machine learning technologies in manufacturing, having an increase of 38 percent in market value from 2020 to 2025.
With unscheduled maintenance having the potential to deeply cut into a businesss bottom line, predictive maintenance can enable factories to make appropriate adjustments and corrections before machinery can experience more costly failures. We want to make sure that our factory in a box will have as much uptime with the fewest delays possible, and predictive maintenance can make that happen.
Extensive IoT sensors that record vital information about the operating conditions and status of a machine make predictive maintenance possible. This may include humidity, temperature, and more.
A machine learning algorithm can analyze patterns in data collected over time and reasonably predict when the machine may need maintenance. There are several approaches to achieve this goal:
Thanks to the IoT sensors powering predictive maintenance, machine learning can analyze the patterns in the data to see what parts of the machine need to be maintained to prevent a failure. If certain patterns lead to a trend of defects, its possible that hardware or software behaviors can be identified as causes of those defects. From here, engineers can come up with solutions to correct the system to avoid those defects in the future. This enables us to reduce the margin of error of our factory in a box scenario.
Digital twins are a virtual recreation of the production process based on data from IoT sensors and real-time data. They can be created as an original hypothetical representation of a system that doesnt yet exist, or they could be a recreation of an existing system.
The digital twin is a sandbox for experimentation in which machine learning can be used to analyze patterns in a simulation to optimize the environment. This helps support quality assurance and predictive maintenance efforts as well. We can also use machine learning alongside digital twins for layout optimization. This works when planning the layout of a factory or for optimizing the existing layout.
If we want to optimize every part of the factory, we also need to pay attention to the energy that it requires. The most common way to do this is to use sequential data measurements, which can be analyzed by data scientists with machine learning algorithms powered by autoregressive models and deep neural networks.
Weve used machine learning to optimize the factorys production processes, but what about the product itself? BMWintroducedthe BMW iX Flow at CES 2022 with a special e-ink wrap that can allow it to change the color (or more accurately, the shade) of the car between black and white. BMW explained that Generative design processes are implemented to ensure the segments reflect the characteristic contours of the vehicle and the resulting variations in light and shadow.
Generative design is where machine learning is used to optimize the design of a product, whether it be an automobile, electronic device, toy, or other items. With data and a desired goal, machine learning can cycle through all possible arrangements to find the best design.
ML algorithms can be trained to optimize a design for weight, shape, durability, cost, strength, and even aesthetic parameters.
Generative design process can be based on these algorithms:
Lets step away from the factory in a box example for a bit and look at a broader picture of needs in manufacturing. Production is only one element. The supply chain roles from a manufacturing center are also being improved with machine learning technologies, such as logistics route optimization and warehouse inventory control. These make up a cognitive supply chain that continues to evolve in the manufacturing industry.
AI-powered logistics solutions use object detection models instead of barcode detection, thus replacing manual scanning. Computer vision systems can detect shortages and overstock. By identifying these patterns, managers can be made aware of actionable situations. Computers can even be left to take action automatically to optimize inventory storage.
At MobiDev, we have researched a use case of creating a system capable of detecting objects for logistics. Read more aboutobject detection using small datasetsfor automated items counting in logistics.
How much should a factory produce and ship out? This is a question that can be difficult to answer. However, with access to appropriate data, machine learning algorithms can help factories understand how much they should be making without overproducing. The future of machine learning in manufacturing depends on innovative decisions.
Visit link:
Machine Learning Application in the Manufacturing Industry - IoT For All
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]