Machine learning based prediction for oncologic outcomes of renal … – Nature.com

Using the original KORCC database9, two recent studies have been reported28,29. At first, Byun et al.28 assessed the prognosis of non-metastatic clear cell RCC using a deep learning-based survival predictions model. Harrels C-indices of DeepSurv for recurrence and cancer-specific survival were 0.802 and 0.834, respectively. More recently, Kim et al.29 developed ML-based algorithm predicting the probability of recurrence at 5 and 10years after surgery. The highest area under the receiver operating characteristic curve (AUROC) was obtained from the nave Bayes (NB) model, with values of 0.836 and 0.784 at 5 and 10years, respectively.

In the current study, we used the updated KORCC database. It now contains clinical data of more than 10,000 patients. To the best of our knowledge, this is the largest dataset in Asian population with RCC. With this dataset, we could develop much more accurate models with very high accuracy (range, 0.770.94) and F1-score (range, 0.770.97, Table 3). The accuracy values were relatively high compared to the previous models, including the Kattan nomogram, Leibovich model, the GRANT score, which were around 0.75,6,7,8. Among them, the Kattan nomogram was developed using a cohort of 601 patients with clinically localized RCC, and the overall C-index was 74%5. In a subsequent analysis with the same patient group using an additional prognostic variables including tumor necrosis, vascular invasion, and tumor grade, the C-index was as high as 82%30. Their prediction accuracies were not as high as ours yet.

In addition, we could include short-term (3-year) recurrence and survival data, which would be helpful for developing more sophisticated surveillance strategy. The other strength of current study was that most algorithms introduced so far had been applied18,19,20,21,22,23,24,25,26, showing relatively consistent performance with high accuracy. Finally, we also performed an external validation by using a separate (SNUBH) cohort, and achieved well maintained high accuracy and F1-score in both recurrence and survival (Fig.2). External validation of prediction models is essential, especially in case of using the multi-institutional dataset, to ensure and correct for differences between institutions.

AUROC has been mostly used as the standard evaluating performance of prediction models5,6,7,8,29. However, AUROC weighs changes in sensitivity and specificity equally without considering clinically meaningful information6. In addition, the lack of ability to compare performance of different ML models is another limitation of AUROC technique31. Thus, we adopted accuracy and F1-score instead of AUROC as evaluation metrics. F1-score, in addition to SMOTE17, is used as better accuracy metrics to solve the imbalanced data problems27.

RCC is not a single disease, but multiple histologically defined cancers with different genetic characteristics, clinical courses, and therapeutic responses32. With regard to metastatic RCC, the International Metastatic Renal Cell Carcinoma Database Consortium and the Memorial Sloan Kettering Cancer Center risk model have been extensively validated and widely used to predict survival outcomes of patients receiving systemic therapy33,34. However, both risk models had been developed without considering histologic subtypes. Thus, the predictive performance was presumed to have been strongly affected by clear cell type (predominant histologic subtype) RCC. Interestingly, in our previous study using the Korean metastatic RCC registry, we found the both risk models reliably predicted progression and survival even in non-clear cell type RCC35. In the current study, after performing subgroup analysis according to the histologic type (clear vs. non-clear cell type RCC), we also found very high accuracy and F1-score in all tested metrics (Supplemental Tables 3 and 4). Taking together, these findings suggest that the prognostic difference between clear and non-clear cell type RCC seems to be offset both in metastatic and non-metastatic RCC. Further effort is needed to develop and validate a sophisticated prediction model for individual subtypes of non-clear cell type RCC.

The current study had several limitations. First, due to the paucity of long-term follow-up cases at 10years, data imbalance problem could not be avoided. Subsequently, recurrence-free rate at 10-year was reported only to be 45.3%. In the majority of patients, further long-term follow up had not been performed in case of no evidence of disease at five years. However, we adopted both SMOTE and F1-score to solve these imbalanced data problems. The retrospective design of this study was also an inherent limitation. Another limitation was that the developed prediction model only included the Korean population. Validation of the model using data from other countries and races is also needed. In regard of non-clear cell type RCC, the current study cohort is still relatively small due to the rarity of the disease, we could not avoid integrating each subtype and analyzing together. Thus, further studies is still needed to develop and validate a prediction model for each subtypes. In addition, the lack of more accurate classifiers such as cross-validation and bootstrapping is another limitation of current study. Finally, the web-embedded deployment of model should be followed to improve accessibility and transportability.

Originally posted here:
Machine learning based prediction for oncologic outcomes of renal ... - Nature.com

Related Posts

Comments are closed.