Machine learning developed a CD8+ exhausted T cells signature for predicting prognosis, immune infiltration and drug … – Nature.com
Identification of TRGs and their prognostic value
From the data obtained from the single-cell RNA-seq analyses of OC tissue (GSE184880 dataset), we identified six major types of cells, including T/NK cells, myeloid cells, Epithelial cells, Fibroblasts, B cells and endothelial cells (Fig.2A). Figure2B showed the expression of cell markers. We then extracted T/NK cells for further analysis. As result, T/NK cells could be re-clustered into CD8+ cytotoxic T, CD8+ exhausted T, NK, CD4+ exhausted T and CD4+ nave T based on expression pattern of cell markers (Fig.2C,D). Development trajectory analyses of T/NK cells unveiled that CD4+ nave T, CD8+ cytotoxic T, and NK were enriched in initial differentiation phase while CD4+ exhausted T and CD8+ exhausted T were enriched in terminal differentiation phase (Fig.2E). Based on the FindAllMarkers function of the Seurat package, we identified 384 TRGs. Compared with normal tissues, we obtained 9638 DEGs in OC tissues (Fig.2F), including 248 TRGs (Fig.2G) in TCGA dataset. Among these differentially expressed TRGs, a total of 41 genes were significantly associated with the prognosis of OC patients in TCGA dataset (Fig.2H, P<0.05).
Identification of TRGs and their prognostic value. (A) t-SNE plot showing the identified cell types of from 7 ovarian cancer sample. (B) Dotplot showing average expression levels of cell marker. (C,D) SNE plot of sub-cell types of T cells and dotplot of expression pattern of cell markers. (E) Developmental trajectory of T cells inferred by monocle, colored by pseudotime and cell subtype. (F) Volcano plot showing DEGs in ovarian cancer. (G) Overlap between DEGs and TRGs. (H) Potential biomarkers identified by univariate cox analysis.
These 41 potential prognostic biomarkers were submitted to an integrative machine learning procedure including 10 methods, with which we developed a stable TRPS. As a result, we obtained a total of 101 kinds of prognostic models and their C-index in training and testing cohorts were shown in Fig.3A. The data suggested that the prognostic signature constructed by Enet (alpha=0.3) method was considered as the optimal TRPS with a highest average C-index of 0.58 (Fig.3A). The optimal TRPS was developed by 18 TRGs. The formula of the risk score was shown in Supplementary methods and results. Using the best cut-off value, we then divided into ovarian cancer cases into high and low TRPS score. As expected, OC patients with high risk score had a poor OS rate in TCGA cohort (P<0.001), GSE14764 cohort (P=0.0146), GSE26193 cohort (P=0.0039), GSE26712 cohort (P=0.0013), GSE63885 cohort (P<0.001) and GSE140082 (P=0.0032) cohort (Fig.3BG), with the AUCs of 2-, 3-, and 4-year being 0.728, 0.783, and 0.773 in TCGA cohort; 0.629, 0.642, and 0.739 in GSE14764 cohort; 0.617, 0.644, and 0.616 in GSE26193 cohort; 0.607, 0.587, and 0.591 in GSE26712 cohort, 0.672, 0.646 and 0.721 in GSE63885 cohort, 0.608 and 0.617 in GSE140082 cohort, respectively (Fig.3BG).
Identification of TRPS by machine learning. (A) The C-index of 101 kinds prognostic models constructed by 10 machine learning algorithms in training and testing cohort. (BG) The survival curve of ovarian cancer patients with different TRPS score and their corresponding ROC curve in TCGA, GSE14764, GSE26193, GSE26172, GSE63885 and GSE140082 cohort.
To compare the performance of TRPS with other prognostic signatures in predicting the OS rate of OC cases, we randomly collected 45 OC-related prognostic signatures (Supplementary Table 1) and calculated their C-index. As a result, the C-index of TRPS was higher than most of these prognostic signatures in TCGA dataset (Fig.4A). Moreover, the C-index of TRPS was higher than that of tumor grade and clinical stage in training and testing cohorts (Fig.4BF). These evidences suggested that the predictive value of TRPS in predicting the clinical outcome of OC patients was higher than most of signatures and clinical characters. However, we could not evaluate the predictive value of TRPS in predicting the OS rate of OC patients in GSE26712 cohort due to the missing data of tumor grade and clinical stage. Based on the result of univariate and multivariate cox regression analysis, TRPS served as an independent risk factor for the clinical outcome of OC patients in TCGA, GSE14764, GSE26193, GSE63885 and GSE140082 cohort (Fig.4G,H, all P<0.05). To predict the 1-year, 3-year and 5-year OS rate of OC patients, we then constructed a nomogram based on TRPS, clinical stage and tumor grade using TCGA dataset (Fig.4I). The comparison between the predicted curve and the ideal curve showed a high coincidence in TCGA dataset (Fig.4J). Compared with TPRS, clinical stage and tumor grade, the AUC of nomogram were higher in TCGA dataset (Fig.4K).
Evaluation the performance of TRPS in predicting prognosis of OC patients. (A) C-index of TRPS and other 45 established signatures in predicting the prognosis of OC patients. (BF) The C-index of TRPS, tumor grade and clinical stage in predicting prognosis of OC patients in TCGA, GSE14764, GSE26193, GSE63885 and GSE140082 cohort. (G,H) Univariate and multivariate cox regression analysis considering grade, stage and TRPS in training and testing cohort. (I,J) Predictive nomogram and calibration evaluating the 1-y, 3-y and 5-y overall survival rate of OC patients. (K) ROC curve evaluated the performance of nomogram in predicting prognosis of OC patients.
As shown in Fig.5A, TRPS showed significant correlation with the abundance of immune cells in TCGA dataset (all P<0.05). More specifically, TRPS showed a negative correlation with immuno-activated cell infiltration, such as CD8+ T cells, plasma cells, macrophage M1 and NK cells in TCGA dataset (Fig.5BE, all P<0.05). Interestingly, higher risk score indicated a higher level of cancer-related fibroblasts in TCGA dataset (Fig.5F). Similar results were obtained in ssGSEA analysis, suggesting a higher abundance of immuno-activated cells in low risk score group, including aDCs, B cells, CD8+ T cells, Neutrophils, NK cells, Tfh and TIL in TCGA dataset (Fig.5G, all P<0.05). Previous studies showed that macrophage M2/M1 polarization played a vital role in the progression of cancer9,10. Our study showed that OC patients with high risk score had a higher macrophage M2/M1 polarization in TCGA, GSE26712, and GSE140082 cohort (Fig.5H, all P<0.05). Further analysis suggested a higher stromal score, immune score and ESTIMAE score in low risk score group in TCGA dataset (Fig.5I, all P<0.001). Moreover, higher risk score indicated a higher APC co-stimulation score, CCR score, cytolytic activity score, para-inflammation promoting score, parainflammation and T cell co-stimulation score in TCGA dataset (Fig.5J).
Correlation between immune microenvironment and TRPS in OC. (A) Seven state-of-the-art algorithms evaluating the correlation between TRPS and immune cell infiltration in OC. (BF) The correlation between TRPS and the abundance of CD8+ T cells, plasma cells, macrophage M1 and CAFs. (G) The level of immune cells in different TRPS score group based on ssGSEA analysis. (H) The macrophage M2/M1 ratio in different TRPS score group in TCGA, GSE26712 and GSE140082 dataset. (I,J) The stromal score, immune score, ESTIMAE score and immune-related functions score in different TRPS score group. *P<0.05, **P<0.01, ***P<0.001.
High HLA-related gene expression indicated wider range of antigen presentation, increasing the likelihood of presenting more immunogenic antigens, and the likelihood of benefiting from immunotherapy11. We found that OC patients with low risk score had a higher HLA-related genes in TCGA dataset (Fig.6A, all P<0.05). Immune checkpoints played a vital role in immune escape of cancer. Based on our results, the expression of most of immune checkpoints was higher in high risk score groups in OC in TCGA dataset (Fig.6B, all P<0.05). Previous study showed that high TMB score was correlated with a better response to immunotherapy12. IPS was a superior predictor of response to anti-CTLA-4 and anti-PD-1 antibody and high IPS indicated a better response to immunotherapy13. High TIDE score indicated a greater likelihood of immune escape and less effectiveness of ICI treatment14. As showed in Fig.6CF, OC patients with low risk score had a higher TMB score, higher PD1 immunophenoscore, CTLA4 immunophenoscore, and PD1&CTLA4 immunophenoscore, lower immune escape score, lower TIDE score, lower T cell exclusion and dysfunction score in TCGA dataset. Thus, OC patients with low risk score may have a better immunotherapy benefit. To further verify the predictive value of TRPS in immunotherapy benefits, we then applied two immunotherapy cohorts to further verify our results. As shown in Fig.6G, the risk score in non-responders was significantly higher than that in responders in IMvigor210 cohort (P<0.01). Moreover, high risk score indicated a poor clinical outcome and lower response rate in IMvigor210 cohort (Fig.6G). Similar results were obtained in GSE91061 cohort (Fig.6H). As the vital role of chemotherapy, targeted therapy and endocrinotherapy for the treatment of OC, we also detected the IC50 value of common drugs in OC patients. We found that the IC50 value of 5-Fluorouracil, Camptothecin, Cisplatin, Gemcitabine, Foretunib, KRAS inhibitor, Erlotinib, and Tamoxifen were higher in in OC patients with high risk score in TCGA dataset (Fig.7A, all P<0.05). Moreover, positive correlation was obtained between risk score and these drugs in TCGA dataset (Fig.7B). Thus, OC patients with low risk score may be better sensitivity to chemotherapy and targeted therapy.
TRPS as an indicator for immunotherapy response in OC. (A,B) The level of HLA-related genes and immune checkpoints in different TRPS score group. (BF) The TMB score, immunophenoscore, immune escape score and TIDE, T cell dysfunction and exclusion score in different TRPS score group. (G,H) The overall rate and immunotherapy response rate in patients with high and low risk score in GSE91061 and IMvigor210 cohort. *P<0.05, **P<0.01, ***P<0.001.
The IC50 value of common drugs in different TRPS score group. (A) Low risk score indicated a lower IC50 value of common drugs. (B) The correlation between IC50 value of common drugs and TRPS score.
We finally performed gene set enrichment analysis to explore the potential mechanism mediating the difference of OC patients in clinical outcome, immune infiltration, and therapy response. High risk score indicated a higher sore of angiogenesis, DNA repair, EMT, G2M checkpoint, glycolysis, hypoxia, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, MTORC1 signaling, NOTCH signaling, P53 pathway, and P13K-AKT-mTOR signaling in OC in TCGA dataset (Fig.8AL, all P<0.05).
Gene set enrichment analysis in different TRPS score group. High risk score indicated a higher score of angiogenesis (A), DNA repair (B), EMT (C), G2M checkpoint (D), glycolysis (E), hypoxia (F), IL2-STAT5 signaling (G), IL6-JAK-STAT3 signaling (H), MTORC1 signaling (I), NOTCH signaling (J), P53 pathway (K), and P13K-AKT-mTOR signaling (L).
To further verify the performance of TRPS, we selected ARL6IP5 that contributed the most to the TRPS for further analysis. We first examined the expression of ARL6IP5 in OC cell lines, which showed that the expression of ARL6IP5 was lower in OC cell lines (Fig.9A). Typical immunohistochemical of ARL6IP5 in OC and normal tissues were showed in Fig.9B. In the follow-up study, the results of the CCK-8 assay proved that overexpression of ARL6IP5 obviously inhibited the proliferation of SKOV3 and TOV21G (Fig.9C,D).
Validation of the potential function of ARL6IP5 in OC by in vitro assays. (A) Comparison of ARL6IP5 expressions in normal and OC cell lines. (B) Typical immunohistochemical of ARL6IP5 in OC and normal tissues. (C,D) CCK-8 assay showed that overexpression of ARL6IP5 obviously inhibited the proliferation of SKOV3 and TOV21G cells. *P<0.05, **P<0.01.
See the original post:
Machine learning developed a CD8+ exhausted T cells signature for predicting prognosis, immune infiltration and drug ... - Nature.com
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]
- Yielding insights: Machine learning driven imputations to fill in agricultural data gaps in surveys - World Bank - February 11th, 2025 [February 11th, 2025]
- SKUtrak Promote tool taps machine learning powered analysis to shake up way brands run promotions - Retail Technology Innovation Hub - February 11th, 2025 [February 11th, 2025]
- Machine learning approaches for resilient modulus modeling of cement-stabilized magnetite and hematite iron ore tailings - Nature.com - February 11th, 2025 [February 11th, 2025]
- The Alignment Problem: Machine Learning and Human Values - Harvard Gazette - February 11th, 2025 [February 11th, 2025]
- Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data - Nature.com - February 11th, 2025 [February 11th, 2025]
- Analyzing the influence of manufactured sand and fly ash on concrete strength through experimental and machine learning methods - Nature.com - February 11th, 2025 [February 11th, 2025]
- Machine learning prediction of glaucoma by heavy metal exposure: results from the National Health and Nutrition Examination Survey 2005 to 2008 -... - February 11th, 2025 [February 11th, 2025]
- Correlation of rivaroxaban solubility in mixed solvents for optimization of solubility using machine learning analysis and validation - Nature.com - February 11th, 2025 [February 11th, 2025]
- Characterisation of cardiovascular disease (CVD) incidence and machine learning risk prediction in middle-aged and elderly populations: data from the... - February 11th, 2025 [February 11th, 2025]
- Unlock the Secrets of AI: How Mohit Pandey Makes Machine Learning Fun! - Mi Valle - February 11th, 2025 [February 11th, 2025]