Machine learning-guided determination of Acinetobacter density in … – Nature.com
A descriptive summary of the physicochemical variables and Acinetobacter density of the waterbodies is presented in Table 1. The mean pH, EC, TDS, and SAL of the waterbodies was 7.760.02, 218.664.76 S/cm, 110.532.36mg/L, and 0.100.00 PSU, respectively. While the average TEMP, TSS, TBS, and DO of the rivers was 17.290.21C, 80.175.09mg/L, 87.515.41 NTU, and 8.820.04mg/L, respectively, the corresponding DO5, BOD, and AD was 4.820.11mg/L, 4.000.10mg/L, and 3.190.03 log CFU/100mL respectively.
The bivariate correlation between paired PVs varied significantly from very weak to perfect/very strong positive or negative correlation (Table 2). In the same manner, the correlation between various PVs and AD varies. For instance, negligible but positive very weak correlation exist between AD and pH (r=0.03, p=0.422), and SAL (r=0.06, p=0.184) as well as very weak inverse (negative) correlation between AD and TDS (r=0.05, p=0.243) and EC (r=0.04, p=0.339). A significantly positive but weak correlation occurs between AD and BOD (r=0.26, p=4.21E10), and TSS (r=0.26, p=1.09E09), and TBS (r=0.26, 1.71E-09) whereas, AD had a weak inverse correlation with DO5 (r=0.39, p=1.31E21). While there was a moderate positive correlation between TEMP and AD (r=0.43, p=3.19E26), a moderate but inverse correlation occurred between AD and DO (r=0.46, 1.26E29).
The predicted AD by the 18 ML regression models varied both in average value and coverage (range) as shown in Fig.1. The average predicted AD ranged from 0.0056 log units by M5P to 3.2112 log unit by SVR. The average AD prediction declined from SVR [3.2112 (1.46464.4399)], DTR [3.1842 (2.23124.3036)], ENR [3.1842 (2.12334.8208)], NNT [3.1836 (1.13994.2936)], BRT [3.1833 (1.68904.3103)], RF [3.1795 (1.35634.4514)], XGB [3.1792 (1.10404.5828)], MARS [3.1790 (1.19014.5000)], LR [3.1786 (2.18954.7951)], LRSS [3.1786 (2.16224.7911)], GBM [3.1738 (1.43284.3036)], Cubist [3.1736 (1.10124.5300)], ELM [3.1714 (2.22364.9017)], KNN [3.1657 (1.49884.5001)], ANET6 [0.6077 (0.04191.1504)], ANET33 [0.6077 (0.09500.8568)], ANET42 [0.6077 (0.06920.8568)], and M5P [0.0056 (0.60240.6916)]. However, in term of range coverage XGB [3.1792 (1.10404.5828)] and Cubist [3.1736 (1.10124.5300)] outshined other models because those models overestimated and underestimated AD at lower and higher values respectively when compared with raw data [3.1865 (14.5611)].
Comparison of ML model-predicted AD in the waterbodies. RAW raw/empirical AD value.
Figure2 represents the explanatory contributions of PVs to AD prediction by the models. The subplot A-R gives the absolute magnitude (representing parameter importance) by which a PV instance changes AD prediction by each model from its mean value presented in the vertical axis. In LR, an absolute change from the mean value of pH, BOD, TSS, DO, SAL, and TEMP corresponded to an absolute change of 0.143, 0.108, 0.069, 0.0045, 0.04, and 0.004 units in the LRs AD prediction response/value. Also, an absolute response flux of 0.135, 0.116, 0.069, 0.057, 0.043, and 0.0001 in AD prediction value was attributed to pH, BOD, TSS, DO. SAL, and TEMP changes, respectively, by LRSS. Similarly, absolute change in DO, BOD, TEMP, TSS, pH, and SAL would achieve 0.155, 0.061. 0.099, 0.144, and 0.297 AD prediction response changes by KNN. In addition, the most contributed or important PV whose change largely influenced AD prediction response was TEMP (decreases or decreases the responses up to 0.218) in RF. Summarily, AD prediction response changes were highest and most significantly influenced by BOD (0.209), pH (0.332), TSS (0.265), TEMP (0.6), TSS (0.233), SAL (0.198), BOD (0.127), BOD (0.11), DO (0.028), pH (0.114), pH (0.14), SAL(0.91), and pH (0.427) in XGB, BTR, NNT, DTR, SVR, M5P, ENR, ANET33, ANNET64, ANNET6, ELM, MARS, and Cubist, respectively.
PV-specific contribution to eighteen ML models forecasting capability of AD in MHWE receiving waterbodies. The average baseline value of PV in the ML is presented on the y-axis. The green/red bars represent the absolute value of each PV contribution in predicting AD.
Table 4 presents the eighteen regression algorithms performance predicting AD given the waterbodies PVs. In terms of MSE, RMSE, and R2, XGB (MSE=0.0059, RMSE=0.0770; R2=0.9912) and Cubist (MSE=0.0117, RMSE=0.1081, R2=0.9827) ranked first and second respectively, to outmatched other models in predicting AD. While MSE and RMSE metrics ranked ANET6 (MSE=0.0172, RMSE=0.1310), ANRT42 (MSE=0.0220, RMSE=0.1483), ANET33 (MSE=0.0253, RMSE=0.1590), M5P (MSE=0.0275, RMSE=0.1657), and RF (MSE=0.0282, RMSE=0.1679) in the 3, 4, 5, 6, and 7 position among the MLs in predicting AD, M5P (R2=0.9589 and RF (R2=0.9584) recorded better performance in term of R-squared metric and ANET6 (MAD=0.0856) and M5P (MAD=0.0863) in term of MAD metric among the 5 models. But Cubist (MAD=0.0437) XGB (MAD=0.0440) in term of MAD metric.
The feature importance of each PV over permutational resampling on the predictive capability of the ML models in predicting AD in the waterbodies is presented in Table 3 and Fig. S1. The identified important variables ranked differently from one model to another, with temperature ranking in the first position by 10/18 of the models. In the 10 algorithms/models, the temperature was responsible for the highest mean RMSE dropout loss, with temperature in RF, XGB, Cubist, BRT, and NNT accounting for 0.4222 (45.90%), 0.4588 (43.00%), 0.5294 (50.82%), 0.3044 (44.87%), and 0.2424 (68.77%) respectively, while 0.1143 (82.31%),0.1384 (83.30%), 0.1059 (57.00%), 0.4656 (50.58%), and 0.2682 (57.58%) RMSE dropout loss was attributed to temperature in ANET42, ANET10, ELM, M5P, and DTR respectively. Temperature also ranked second in 2/18 models, including ANET33 (0.0559, 45.86%) and GBM (0.0793, 21.84%). BOD was another important variable in forecasting AD in the waterbodies and ranked first in 3/18 and second in 8/18 models. While BOD ranked as the first important variable in AD prediction in MARS (0.9343, 182.96%), LR (0.0584, 27.42%), and GBM (0.0812, 22.35%), it ranked second in KNN (0.2660, 42.69%), XGB (0.4119, 38.60); BRT (0.2206, 32.51%), ELM (0.0430, 23.17%), SVR (0.1869, 35.77%), DTR (0.1636, 35.13%), ENR (0.0469, 21.84%) and LRSS (0.0669, 31.65%). SAL rank first in 2/18 (KNN: 0.2799; ANET33: 0.0633) and second in 3/18 (Cubist: 0.3795; ANET42: 0.0946; ANET10: 0.1359) of the models. DO ranked first in 2/18 (ENR [0.0562; 26.19%] and LRSS [0.0899; 42.51%]) and second in 3/18 (RF [0.3240, 35.23%], M5P [0.3704, 40.23%], LR [0.0584, 27.41%]) of the models.
Figure3 shows the residual diagnostics plots of the models comparing actual AD and forecasted AD values by the models. The observed results showed that actual AD and predicted AD value in the case of LR (A), LRSS (B), KNN (C), BRT 9F), GBM (G), NNT (H), DTR (I), SVR (J), ENR (L), ANET33 (M), ANER64 (N), ANET6 (O), ELM (P) and MARS (Q) skewed, and the smoothed trend did not overlap. However, actual AD and predicted AD values experienced more alignment and an approximately overlapped smoothed trend was seen in RF (D), XGB (E), M5P (K), and Cubist (R). Among the models, RF (D) and M5P (K) both overestimated and underestimated predicted AD at lower and higher values, respectively. Whereas XGB and Cubist both overestimated AD value at lower value with XGB closer to the smoothed trend that Cubist. Generally, a smoothed trend overlapping the gradient line is desirable as it shows that a model fits all values accurately/precisely.
Comparison between actual and predicted AD by the eighteen ML models.
The comparison of the partial-dependence profiles of PVs on AD prediction by the 18 modes using a unitary model by PVs presentation for clarity is shown in Figs. S2S7. The partial-dependence profiles existed in i. a form where an average increase in AD prediction accompanied a PV increase (upwards trend), (ii) inverse trend, where an increase in a PV resulted in a decline AD prediction, (iii) horizontal trend, where increase/decrease in a PV yielded no effects on AD prediction, and (iv) a mixed trend, where the shape switch between 2 or more of iiii. The models' response varied with a change in any of the PV, especially changes beyond the breakpoints that could decrease or increase AD prediction response.
The partial-dependence profile (PDP) of DO for models has a downtrend either from the start or after a breakpoint(s) of nature ii and iv, except for ELM which had an upward trend (i, Fig. S2). TEMP PDP had an upward trend (i and iv) and, in most cases filled with one or more breakpoints but had a horizontal trend in LRSS (Fig. S3). SAL had a PDP of a typical downward trend (ii and iv) across all the models (Fig. S4). While pH displayed a typical downtrend PDP in LR, LRSS, NNT, ENR, ANN6, a downtrend filled with different breakpoint(s) was seen in RF, M5P, and SVR; other models showed a typical upward trend (i and iv) filled with breakpoint(s) (Fig. S5). The PDP of TSS showed an upward trend that returned to a plateau (DTR, ANN33, M5P, GBM, RF, XFB, BRT), after a final breakpoint or a declining trend (ANNT6, SVR; Fig. S6). The BOD PDP generally had an upward trend filled with breakpoint(s) in most models (Fig. S7).
Continued here:
Machine learning-guided determination of Acinetobacter density in ... - Nature.com
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]