Machine learning in higher education – McKinsey
Many higher-education institutions are now using data and analytics as an integral part of their processes. Whether the goal is to identify and better support pain points in the student journey, more efficiently allocate resources, or improve student and faculty experience, institutions are seeing the benefits of data-backed solutions.
Those at the forefront of this trend are focusing on harnessing analytics to increase program personalization and flexibility, as well as to improve retention by identifying students at risk of dropping out and reaching out proactively with tailored interventions. Indeed, data science and machine learning may unlock significant value for universities by ensuring resources are targeted toward the highest-impact opportunities to improve access for more students, as well as student engagement and satisfaction.
For example, Western Governors University in Utah is using predictive modeling to improve retention by identifying at-risk students and developing early-intervention programs. Initial efforts raised the graduation rate for the universitys four-year undergraduate program by five percentage points between 2018 and 2020.
Yet higher education is still in the early stages of data capability building. With universities facing many challenges (such as financial pressures, the demographic cliff, and an uptick in student mental-health issues) and a variety of opportunities (including reaching adult learners and scaling online learning), expanding use of advanced analytics and machine learning may prove beneficial.
Below, we share some of the most promising use cases for advanced analytics in higher education to show how universities are capitalizing on those opportunities to overcome current challenges, both enabling access for many more students and improving the student experience.
Data science and machine learning may unlock significant value for universities by ensuring resources are targeted toward the highest-impact opportunities to improve access for more students, as well as student engagement and satisfaction.
Advanced-analytics techniques may help institutions unlock significantly deeper insights into their student populations and identify more nuanced risks than they could achieve through descriptive and diagnostic analytics, which rely on linear, rule-based approaches (Exhibit 1).
Exhibit 1
Advanced analyticswhich uses the power of algorithms such as gradient boosting and random forestmay also help institutions address inadvertent biases in their existing methods of identifying at-risk students and proactively design tailored interventions to mitigate the majority of identified risks.
For instance, institutions using linear, rule-based approaches look at indicators such as low grades and poor attendance to identify students at risk of dropping out; institutions then reach out to these students and launch initiatives to better support them. While such initiatives may be of use, they often are implemented too late and only target a subset of the at-risk population. This approach could be a good makeshift solution for two problems facing student success leaders at universities. First, there are too many variables that could be analyzed to indicate risk of attrition (such as academic, financial, and mental health factors, and sense of belonging on campus). Second, while its easy to identify notable variance on any one or two variables, it is challenging to identify nominal variance on multiple variables. Linear, rule-based approaches therefore may fail to identify students who, for instance, may have decent grades and above-average attendance but who have been struggling to submit their assignments on time or have consistently had difficulty paying their bills (Exhibit 2).
Exhibit 2
A machine-learning model could address both of the challenges described above. Such a model looks at ten years of data to identify factors that could help a university make an early determination of a students risk of attrition. For example, did the student change payment methods on the university portal? How close to the due date does the student submit assignments? Once the institution has identified students at risk, it can proactively deploy interventions to retain them.
Though many institutions recognize the promise of analytics for personalizing communications with students, increasing retention rates, and improving student experience and engagement, institutions could be using these approaches for the full range of use cases across the student journeyfor prospective, current, and former students alike.
For instance, advanced analytics can help institutions identify which high schools, zip codes, and counties they should focus on to reach prospective students who are most likely to be great fits for the institution. Machine learning could also help identify interventions and support that should be made available to different archetypes of enrolled students to help measure and increase student satisfaction. These use cases could then be extended to providing students support with developing their skills beyond graduation, enabling institutions to provide continual learning opportunities and to better engage alumni. As an institution expands its application and coverage of advanced-analytics tools across the student life cycle, the model gets better at identifying patterns, and the institution can take increasingly granular interventions and actions.
Institutions will likely want to adopt a multistep model to harness machine learning to better serve students. For example, for efforts aimed at improving student completion and graduation rates, the following five-step technique could generate immense value:
Institutions could deploy this model at a regular cadence to identify students who would most benefit from additional support.
Institutions could also create similar models to address other strategic goals or challenges, including lead generation and enrollment. For example, institutions could, as a first step, analyze 100 or more attributes from years of historical data to understand the characteristics of applicants who are most likely to enroll.
Institutions will likely want to adopt a multistep model to harness machine learning to better serve students.
The experiences of two higher education institutions that leaned on advanced analytics to improve enrollment and retention reveal the impact such efforts can have.
One private nonprofit university had recently enrolled its largest freshman class in history and was looking to increase its enrollment again. The institution wanted to both reach more prospective first-year undergraduate students who would be a great fit for the institution and improve conversion in the enrollment journey in a way that was manageable for the enrollment team without significantly increasing investment and resources. The university took three important actions:
For this institution, advanced-analytics modeling had immediate implications and impact. The initiative also suggested future opportunities for the university to serve more freshmen with greater marketing efficiency. When initially tested against leads for the subsequent fall (prior to the application deadline), the model accurately predicted 85 percent of candidates who submitted an application, and it predicted the 35 percent of applicants at that point in the cycle who were most likely to enroll, assuming no changes to admissions criteria (Exhibit 3). The enrollment management team is now able to better prioritize its resources and time on high-potential leads and applicants to yield a sizable class. These new capabilities will give the institution the flexibility to make strategic choices; rather than focus primarily on the size of the incoming class, it may ensure the desired class size while prioritizing other objectives, such as class mix, financial-aid allocation, or budget savings.
Exhibit 3
Similar to many higher-education institutions during the pandemic, one online university was facing a significant downward trend in student retention. The university explored multiple options and deployed initiatives spearheaded by both academic and administrative departments, including focus groups and nudge campaigns, but the results fell short of expectations.
The institution wanted to set a high bar for student success and achieve marked and sustainable improvements to retention. It turned to an advanced-analytics approach to pursue its bold aspirations.
To build a machine-learning model that would allow the university to identify students at risk of attrition early, it first analyzed ten years of historical data to understand key characteristics that differentiate students who were most likely to continueand thus graduatecompared with those who unenrolled. After validating that the initial model was multiple times more effective at predicting retention than the baseline, the institution refined the model and applied it to the current student population. This attrition model yielded five at-risk student archetypes, three of which were counterintuitive to conventional wisdom about what typical at-risk student profiles look like (Exhibit 4).
Exhibit 4
Together, these three counterintuitive archetypes of at-risk studentswhich would have been omitted using a linear analytics approachaccount for about 70 percent of the students most likely to discontinue enrollment. The largest group of at-risk individuals (accounting for about 40 percent of the at-risk students identified) were distinctive academic achievers with an excellent overall track record. This means the model identified at least twice as many students at risk of attrition than models based on linear rules. The model outputs have allowed the university to identify students at risk of attrition more effectively and strategically invest in short- and medium-term initiatives most likely to drive retention improvement.
With the model and data on at-risk student profiles in hand, the online university launched a set of targeted interventions focused on providing tailored support to students in each archetype to increase retention. Actions included scheduling more touchpoints with academic and career advisers, expanding faculty mentorship, and creating alternative pathways for students to satisfy their knowledge gaps.
Advanced analytics is a powerful tool that may help higher-education institutions overcome the challenges facing them today, spur growth, and better support students. However, machine learning is complex, with considerable associated risks. While the risks vary based on the institution and the data included in the model, higher-education institutions may wish to take the following steps when using these tools:
While many higher-education institutions have started down the path to harnessing data and analytics, there is still a long way to go to realizing the full potential of these capabilities in terms of the student experience. The influx of students and institutions that have been engaged in online learning and using technology tools over the past two years means there is significantly more data to work with than ever before; higher-education institutions may want to start using it to serve students better in the years to come.
Here is the original post:
Machine learning in higher education - McKinsey
- Machine learning-random forest model was used to construct gene signature associated with cuproptosis to predict the prognosis of gastric cancer -... - February 5th, 2025 [February 5th, 2025]
- Machine learning for predicting severe dengue in Puerto Rico - Infectious Diseases of Poverty - BioMed Central - February 5th, 2025 [February 5th, 2025]
- Panoramic radiographic features for machine learning based detection of mandibular third molar root and inferior alveolar canal contact - Nature.com - February 5th, 2025 [February 5th, 2025]
- AI and machine learning: revolutionising drug discovery and transforming patient care - Roche - February 5th, 2025 [February 5th, 2025]
- Development of a machine learning model related to explore the association between heavy metal exposure and alveolar bone loss among US adults... - February 5th, 2025 [February 5th, 2025]
- Identification of therapeutic targets for Alzheimers Disease Treatment using bioinformatics and machine learning - Nature.com - February 5th, 2025 [February 5th, 2025]
- A novel aggregated coefficient ranking based feature selection strategy for enhancing the diagnosis of breast cancer classification using machine... - February 5th, 2025 [February 5th, 2025]
- Performance prediction and optimization of a high-efficiency tessellated diamond fractal MIMO antenna for terahertz 6G communication using machine... - February 5th, 2025 [February 5th, 2025]
- How machine learning and AI can be harnessed for mission-based lending - ImpactAlpha - January 27th, 2025 [January 27th, 2025]
- Machine learning meta-analysis identifies individual characteristics moderating cognitive intervention efficacy for anxiety and depression symptoms -... - January 27th, 2025 [January 27th, 2025]
- Using robotics to introduce AI and machine learning concepts into the elementary classroom - George Mason University - January 27th, 2025 [January 27th, 2025]
- Machine learning to identify environmental drivers of phytoplankton blooms in the Southern Baltic Sea - Nature.com - January 27th, 2025 [January 27th, 2025]
- Why Most Machine Learning Projects Fail to Reach Production and How to Beat the Odds - InfoQ.com - January 27th, 2025 [January 27th, 2025]
- Exploring the intersection of AI and climate physics: Machine learning's role in advancing climate science - Phys.org - January 27th, 2025 [January 27th, 2025]
- 5 Questions with Jonah Berger: Using Artificial Intelligence and Machine Learning in Litigation - Cornerstone Research - January 27th, 2025 [January 27th, 2025]
- Modernizing Patient Support: Harnessing Advanced Automation, Artificial Intelligence and Machine Learning to Improve Efficiency and Performance of... - January 27th, 2025 [January 27th, 2025]
- Param Popat Leads the Way in Transforming Machine Learning Systems - Tech Times - January 27th, 2025 [January 27th, 2025]
- Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods - Nature.com - January 27th, 2025 [January 27th, 2025]
- Machine learning is bringing back an infamous pseudoscience used to fuel racism - ZME Science - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning are Redefining Customer Experience Management - Customer Think - January 27th, 2025 [January 27th, 2025]
- Machine Learning Data Catalog Software Market Strategic Insights and Key Innovations: Leading Companies and... - WhaTech - January 27th, 2025 [January 27th, 2025]
- How AI and Machine Learning Will Influence Fintech Frontend Development in 2025 - Benzinga - January 27th, 2025 [January 27th, 2025]
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]