Machine learning in higher education – McKinsey
Many higher-education institutions are now using data and analytics as an integral part of their processes. Whether the goal is to identify and better support pain points in the student journey, more efficiently allocate resources, or improve student and faculty experience, institutions are seeing the benefits of data-backed solutions.
Those at the forefront of this trend are focusing on harnessing analytics to increase program personalization and flexibility, as well as to improve retention by identifying students at risk of dropping out and reaching out proactively with tailored interventions. Indeed, data science and machine learning may unlock significant value for universities by ensuring resources are targeted toward the highest-impact opportunities to improve access for more students, as well as student engagement and satisfaction.
For example, Western Governors University in Utah is using predictive modeling to improve retention by identifying at-risk students and developing early-intervention programs. Initial efforts raised the graduation rate for the universitys four-year undergraduate program by five percentage points between 2018 and 2020.
Yet higher education is still in the early stages of data capability building. With universities facing many challenges (such as financial pressures, the demographic cliff, and an uptick in student mental-health issues) and a variety of opportunities (including reaching adult learners and scaling online learning), expanding use of advanced analytics and machine learning may prove beneficial.
Below, we share some of the most promising use cases for advanced analytics in higher education to show how universities are capitalizing on those opportunities to overcome current challenges, both enabling access for many more students and improving the student experience.
Data science and machine learning may unlock significant value for universities by ensuring resources are targeted toward the highest-impact opportunities to improve access for more students, as well as student engagement and satisfaction.
Advanced-analytics techniques may help institutions unlock significantly deeper insights into their student populations and identify more nuanced risks than they could achieve through descriptive and diagnostic analytics, which rely on linear, rule-based approaches (Exhibit 1).
Exhibit 1
Advanced analyticswhich uses the power of algorithms such as gradient boosting and random forestmay also help institutions address inadvertent biases in their existing methods of identifying at-risk students and proactively design tailored interventions to mitigate the majority of identified risks.
For instance, institutions using linear, rule-based approaches look at indicators such as low grades and poor attendance to identify students at risk of dropping out; institutions then reach out to these students and launch initiatives to better support them. While such initiatives may be of use, they often are implemented too late and only target a subset of the at-risk population. This approach could be a good makeshift solution for two problems facing student success leaders at universities. First, there are too many variables that could be analyzed to indicate risk of attrition (such as academic, financial, and mental health factors, and sense of belonging on campus). Second, while its easy to identify notable variance on any one or two variables, it is challenging to identify nominal variance on multiple variables. Linear, rule-based approaches therefore may fail to identify students who, for instance, may have decent grades and above-average attendance but who have been struggling to submit their assignments on time or have consistently had difficulty paying their bills (Exhibit 2).
Exhibit 2
A machine-learning model could address both of the challenges described above. Such a model looks at ten years of data to identify factors that could help a university make an early determination of a students risk of attrition. For example, did the student change payment methods on the university portal? How close to the due date does the student submit assignments? Once the institution has identified students at risk, it can proactively deploy interventions to retain them.
Though many institutions recognize the promise of analytics for personalizing communications with students, increasing retention rates, and improving student experience and engagement, institutions could be using these approaches for the full range of use cases across the student journeyfor prospective, current, and former students alike.
For instance, advanced analytics can help institutions identify which high schools, zip codes, and counties they should focus on to reach prospective students who are most likely to be great fits for the institution. Machine learning could also help identify interventions and support that should be made available to different archetypes of enrolled students to help measure and increase student satisfaction. These use cases could then be extended to providing students support with developing their skills beyond graduation, enabling institutions to provide continual learning opportunities and to better engage alumni. As an institution expands its application and coverage of advanced-analytics tools across the student life cycle, the model gets better at identifying patterns, and the institution can take increasingly granular interventions and actions.
Institutions will likely want to adopt a multistep model to harness machine learning to better serve students. For example, for efforts aimed at improving student completion and graduation rates, the following five-step technique could generate immense value:
Institutions could deploy this model at a regular cadence to identify students who would most benefit from additional support.
Institutions could also create similar models to address other strategic goals or challenges, including lead generation and enrollment. For example, institutions could, as a first step, analyze 100 or more attributes from years of historical data to understand the characteristics of applicants who are most likely to enroll.
Institutions will likely want to adopt a multistep model to harness machine learning to better serve students.
The experiences of two higher education institutions that leaned on advanced analytics to improve enrollment and retention reveal the impact such efforts can have.
One private nonprofit university had recently enrolled its largest freshman class in history and was looking to increase its enrollment again. The institution wanted to both reach more prospective first-year undergraduate students who would be a great fit for the institution and improve conversion in the enrollment journey in a way that was manageable for the enrollment team without significantly increasing investment and resources. The university took three important actions:
For this institution, advanced-analytics modeling had immediate implications and impact. The initiative also suggested future opportunities for the university to serve more freshmen with greater marketing efficiency. When initially tested against leads for the subsequent fall (prior to the application deadline), the model accurately predicted 85 percent of candidates who submitted an application, and it predicted the 35 percent of applicants at that point in the cycle who were most likely to enroll, assuming no changes to admissions criteria (Exhibit 3). The enrollment management team is now able to better prioritize its resources and time on high-potential leads and applicants to yield a sizable class. These new capabilities will give the institution the flexibility to make strategic choices; rather than focus primarily on the size of the incoming class, it may ensure the desired class size while prioritizing other objectives, such as class mix, financial-aid allocation, or budget savings.
Exhibit 3
Similar to many higher-education institutions during the pandemic, one online university was facing a significant downward trend in student retention. The university explored multiple options and deployed initiatives spearheaded by both academic and administrative departments, including focus groups and nudge campaigns, but the results fell short of expectations.
The institution wanted to set a high bar for student success and achieve marked and sustainable improvements to retention. It turned to an advanced-analytics approach to pursue its bold aspirations.
To build a machine-learning model that would allow the university to identify students at risk of attrition early, it first analyzed ten years of historical data to understand key characteristics that differentiate students who were most likely to continueand thus graduatecompared with those who unenrolled. After validating that the initial model was multiple times more effective at predicting retention than the baseline, the institution refined the model and applied it to the current student population. This attrition model yielded five at-risk student archetypes, three of which were counterintuitive to conventional wisdom about what typical at-risk student profiles look like (Exhibit 4).
Exhibit 4
Together, these three counterintuitive archetypes of at-risk studentswhich would have been omitted using a linear analytics approachaccount for about 70 percent of the students most likely to discontinue enrollment. The largest group of at-risk individuals (accounting for about 40 percent of the at-risk students identified) were distinctive academic achievers with an excellent overall track record. This means the model identified at least twice as many students at risk of attrition than models based on linear rules. The model outputs have allowed the university to identify students at risk of attrition more effectively and strategically invest in short- and medium-term initiatives most likely to drive retention improvement.
With the model and data on at-risk student profiles in hand, the online university launched a set of targeted interventions focused on providing tailored support to students in each archetype to increase retention. Actions included scheduling more touchpoints with academic and career advisers, expanding faculty mentorship, and creating alternative pathways for students to satisfy their knowledge gaps.
Advanced analytics is a powerful tool that may help higher-education institutions overcome the challenges facing them today, spur growth, and better support students. However, machine learning is complex, with considerable associated risks. While the risks vary based on the institution and the data included in the model, higher-education institutions may wish to take the following steps when using these tools:
While many higher-education institutions have started down the path to harnessing data and analytics, there is still a long way to go to realizing the full potential of these capabilities in terms of the student experience. The influx of students and institutions that have been engaged in online learning and using technology tools over the past two years means there is significantly more data to work with than ever before; higher-education institutions may want to start using it to serve students better in the years to come.
Here is the original post:
Machine learning in higher education - McKinsey
- AI and Machine Learning - AI and geospatial companies join forces to map Africa - Smart Cities World - July 30th, 2025 [July 30th, 2025]
- Summer research project explores alternative machine learning framework - Mercer University - July 30th, 2025 [July 30th, 2025]
- Unveiling multiscale drivers of wind speed in Michigan using machine learning - Nature - July 30th, 2025 [July 30th, 2025]
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]