Machine learning in human resources: how it works & its real-world applications – iTMunch
According to research conducted by Glassdoor, on average, the entire interview process conducted by companies in the United Stated usually takes about 22.9 days and the same in Germany, France and the UK takes 4-9 days longer [1]. Another research by the Society for Human Resources that studied data from more than 275,000 members in 160 countries found that the average time taken to fill a position is 42 days [2]. Clearly, hiring is a time-consuming and tedious process. Groundbreaking technologies like cloud computing, big data, augmented reality, virtual reality, blockchain technology and the Internet of Things can play a key role in making this process move faster. Machine learning in human resources is one such technology that has made the recruitment process not just faster but more effective.
Machine learning (ML) is treated as a subset of artificial intelligence (AI). AI is a branch of computer science which deals with building smart machines that are capable of performing certain tasks that typically require human intelligence. Machine learning, by definition, is the study of algorithms that enhance itself automatically over time with more data and experience. It is the science of getting machines (computers) to learn how to think and act like humans. To improve the learnings of a machine learning algorithm, data is fed into it over time in the form of observations and real-world interactions.The algorithms of ML are built on models based on sample or training data to make predictions and decisions without being explicitly programmed to do so.
Machine learning in itself is not a new technology but its integration with the HR function of organizations has been gradual and only recently started to have an impact. In this blog, we talk about how machine learning has contributed in making HR processes easier, how it works and what are its real-world applications. Let us begin by learning about this concept in brief.
The HR departments responsibilities with regards to recruitment used to be gathering and screening resumes, reaching out to candidates that fit the job description, lining up interviews and sending offer letters. It also includes managing a new employees on-boarding process and taking care of the exit process of an employee that decides to leave. Today, the human resource department is about all of this and much more. The department is now also expected to be able to predict employee attrition and candidate success, and this is possible through AI and machine learning in HR.
The objective behind integrating machine learning in human resource processes is the identification and automation of repetitive, time consuming tasks to free up the HR staff. By automating these processes, they can devote more time and resources to other imperative strategic projects and actual human interactions with prospective employees. ML is capable of efficiently handling the following HR roles, tasks and functions:
SEE ALSO:The Role of AI and Machine Learning in Affiliate Marketing
An HR professional keeps track of who saw the job posting and the job portal on which the applicant saw the posting. They collect the CVs and resumes of all the applicants and come up with a way to categorize the data in those documents. Additionally, they schedule, standardize and streamline the entire interview process. Moreover, they keep track of the social media activities of applicants along with other relevant data. All of this data collected by the HR professional is fed into a machine learning HR software from the first day itself. Soon enough, HR analytics in machine learning begins analyzing the data fed to discover and display insights and patterns.
The opportunities of learning through insights provided by machine learning HR are endless. The software helps HR professionals discover things like which interviewer is better at identifying the right candidate and which job portal or job posting attracts more or quality applicants.
With HR analytics and machine learning, fine-tuning and personalization of training is possible which makes the training experience more relevant to the freshly hired employee. It helps in identifying knowledge gaps or loopholes in training early on. It can also become a useful resource for company-related FAQs and information like company policies, code of conduct, benefits and conflict resolution.
The best way to better understand how machine learning has made HR processes more efficient is by getting acquainted with the real world applications of this technology. Let us have a look at some applications below.
SEE ALSO:The Importance of Human Resources Analytics
Scheduling is generally a time-demanding task. It includes coordinating with candidates and scheduling interviews, enhancing the onboarding experience, calling the candidates for follow-ups, performance reviews, training, testing and answering the common HR queries. Automating these tedious processes is one of the first applications of machine learning in human resource. ML takes away the burden of these cumbersome tasks from the HR staff by streamlining and automating it which frees up their time to focus on bigger issues at hand.A few of the best recruitment scheduling software are Beamery, Yello and Avature.
Once an HR professional is informed about the kind of talent that is needed to be hired in a company, one challenge is letting this information out and attracting the right set of candidates that might be fit for the role. Huge amount of companies trust ML for this task. Renowned job search platforms like LinkedIn and Glassdoor use machine learning and intelligent algorithms to help HR professionals filter and find out the best suitable candidates for the job.
Machine learning in human resources is also used to track new and potential applicants as they come into the system. A study was conducted by Capterra to look at how the use of recruitment software or applicant tracking software helped recruiters. It found 75% of the recruiters they contacted used some form of recruitment or applicant tracking software with 94% agreeing that it improved their hiring process. It further found that just 5% of recruiters thought that using applicant tracking software had a negative impact on their company [3].
Using such software also gives the HR professional access to predictive analytics which helps them analyze if the person would be best suitable for the job and a good fit for the company. Some of the best applicant tracking software that are available in the market are Pinpoint, Greenhouse and ClearCompany.
If hiring an employee is difficult, retaining an employee is even more challenging. There are factors in a company that make an employee stay or move to their next job. A study which was conducted by Gallup asked employees from different organizations if theyd leave or stay if certain perks were provided to them. The study found that 37% would quit their present job and take up a new job thatll allow them to work remotely part-time. 54% would switch for monetary bonuses, 51% for flexible working hours and 51% for employers offering retirement plans with pensions [4]. Though employee retention depends on various factors, it is imperative for an HR professional to understand, manage and predict employee attrition.
Machine learning HR tools provide valuable data and insights into the above mentioned factors and help HR professionals make decisions regarding employing someone (or not) more efficiently. By understanding this data about employee turnover, they are in a better position to take corrective measures well in advance to eliminate or minimize the issues.
An engaged employee is one who is involved in, committed to and enthusiastic about their work and workplace. The State of the Global Workforce report by Gallop found that 85% of the employees in the workplace are disengaged. Translation: Majority of the workforce views their workplace negatively or only does the bare minimum to get through the day, with little to no attachment to their work or workplace. The study further addresses why employee engagement is necessary. It found that offices with more engaged employees result in 10% higher customer metrics, 17% higher productivity, 20% more sales and 21% more profitability. Moreover, it found that highly engaged workplaces saw 41% less absenteeism [5].
Machine learning HR software helps the human resource department in making the employees more engaged. The insights provided by HR analytics by machine learning software help the HR team significantly in increasing employee productivity and reducing employee turnover rates. Software from Workometry and Glint aids immeasurable in measuring, analyzing and reporting on employee engagement and the general feeling towards their work.
The applications of machine learning in human resources we read above are already in use by HR professionals across the globe. Though the human element from human resources wont completely disappear, machine learning can guide and assist HR professionals substantially in ensuring the various functions of this department are well aligned and the strategic decisions made on a day-to-day basis are more accurate.
These are definitely exciting times for the HR industry and it is crucial that those working in this department are aware of the existing cutting-edge solutions available and the new trends that continue to develop.
The automation of HR functions like hiring & recruitment, training, development and retention has already made a profound positive effect on companies. Companies that refuse to or are slow to adapt and adopt machine learning and other new technologies will find themselves at a competitive disadvantage while those embrace them happily will flourish.
SEE ALSO:Future of Human Resource Management: HR Tech Trends of 2019
For more updates and latest tech news, keep reading iTMunch
Sources
[1] Glassdoor (2015) Why is Hiring Taking Longer, New Insights from Glassdoor Data [Online] Available from: https://www.glassdoor.com/research/app/uploads/sites/2/2015/06/GD_Report_3-2.pdf [Accessed December 2020]
[2] [Society for Human Resource Management (2016) 2016 Human Capital Benchmarking Report [Online] Available from: https://www.ebiinc.com/wp-content/uploads/attachments/2016-Human-Capital-Report.pdf [Accessed December 2020]
[3] Capterra (2015) Recruiting Software Impact Report [Online] Available from: https://www.capterra.com/recruiting-software/impact-of-recruiting-software-on-businesses [Accessed December 2020]
[4] Gallup (2017) State of the American Workplace Report [Online] Available from: https://www.gallup.com/workplace/238085/state-american-workplace-report-2017.aspx [Accessed December 2020]
[5] Gallup (2017) State of the Global Workplace [Online] Available from: https://www.gallup.com/workplace/238079/state-global-workplace-2017.aspx#formheader [Accessed December 2020]
Image Courtesy
Image 1: Background vector created by starline http://www.freepik.com
Image 2: Business photo created by yanalya http://www.freepik.com
Here is the original post:
Machine learning in human resources: how it works & its real-world applications - iTMunch
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]