Machine learning in human resources: how it works & its real-world applications – iTMunch
According to research conducted by Glassdoor, on average, the entire interview process conducted by companies in the United Stated usually takes about 22.9 days and the same in Germany, France and the UK takes 4-9 days longer [1]. Another research by the Society for Human Resources that studied data from more than 275,000 members in 160 countries found that the average time taken to fill a position is 42 days [2]. Clearly, hiring is a time-consuming and tedious process. Groundbreaking technologies like cloud computing, big data, augmented reality, virtual reality, blockchain technology and the Internet of Things can play a key role in making this process move faster. Machine learning in human resources is one such technology that has made the recruitment process not just faster but more effective.
Machine learning (ML) is treated as a subset of artificial intelligence (AI). AI is a branch of computer science which deals with building smart machines that are capable of performing certain tasks that typically require human intelligence. Machine learning, by definition, is the study of algorithms that enhance itself automatically over time with more data and experience. It is the science of getting machines (computers) to learn how to think and act like humans. To improve the learnings of a machine learning algorithm, data is fed into it over time in the form of observations and real-world interactions.The algorithms of ML are built on models based on sample or training data to make predictions and decisions without being explicitly programmed to do so.
Machine learning in itself is not a new technology but its integration with the HR function of organizations has been gradual and only recently started to have an impact. In this blog, we talk about how machine learning has contributed in making HR processes easier, how it works and what are its real-world applications. Let us begin by learning about this concept in brief.
The HR departments responsibilities with regards to recruitment used to be gathering and screening resumes, reaching out to candidates that fit the job description, lining up interviews and sending offer letters. It also includes managing a new employees on-boarding process and taking care of the exit process of an employee that decides to leave. Today, the human resource department is about all of this and much more. The department is now also expected to be able to predict employee attrition and candidate success, and this is possible through AI and machine learning in HR.
The objective behind integrating machine learning in human resource processes is the identification and automation of repetitive, time consuming tasks to free up the HR staff. By automating these processes, they can devote more time and resources to other imperative strategic projects and actual human interactions with prospective employees. ML is capable of efficiently handling the following HR roles, tasks and functions:
SEE ALSO:The Role of AI and Machine Learning in Affiliate Marketing
An HR professional keeps track of who saw the job posting and the job portal on which the applicant saw the posting. They collect the CVs and resumes of all the applicants and come up with a way to categorize the data in those documents. Additionally, they schedule, standardize and streamline the entire interview process. Moreover, they keep track of the social media activities of applicants along with other relevant data. All of this data collected by the HR professional is fed into a machine learning HR software from the first day itself. Soon enough, HR analytics in machine learning begins analyzing the data fed to discover and display insights and patterns.
The opportunities of learning through insights provided by machine learning HR are endless. The software helps HR professionals discover things like which interviewer is better at identifying the right candidate and which job portal or job posting attracts more or quality applicants.
With HR analytics and machine learning, fine-tuning and personalization of training is possible which makes the training experience more relevant to the freshly hired employee. It helps in identifying knowledge gaps or loopholes in training early on. It can also become a useful resource for company-related FAQs and information like company policies, code of conduct, benefits and conflict resolution.
The best way to better understand how machine learning has made HR processes more efficient is by getting acquainted with the real world applications of this technology. Let us have a look at some applications below.
SEE ALSO:The Importance of Human Resources Analytics
Scheduling is generally a time-demanding task. It includes coordinating with candidates and scheduling interviews, enhancing the onboarding experience, calling the candidates for follow-ups, performance reviews, training, testing and answering the common HR queries. Automating these tedious processes is one of the first applications of machine learning in human resource. ML takes away the burden of these cumbersome tasks from the HR staff by streamlining and automating it which frees up their time to focus on bigger issues at hand.A few of the best recruitment scheduling software are Beamery, Yello and Avature.
Once an HR professional is informed about the kind of talent that is needed to be hired in a company, one challenge is letting this information out and attracting the right set of candidates that might be fit for the role. Huge amount of companies trust ML for this task. Renowned job search platforms like LinkedIn and Glassdoor use machine learning and intelligent algorithms to help HR professionals filter and find out the best suitable candidates for the job.
Machine learning in human resources is also used to track new and potential applicants as they come into the system. A study was conducted by Capterra to look at how the use of recruitment software or applicant tracking software helped recruiters. It found 75% of the recruiters they contacted used some form of recruitment or applicant tracking software with 94% agreeing that it improved their hiring process. It further found that just 5% of recruiters thought that using applicant tracking software had a negative impact on their company [3].
Using such software also gives the HR professional access to predictive analytics which helps them analyze if the person would be best suitable for the job and a good fit for the company. Some of the best applicant tracking software that are available in the market are Pinpoint, Greenhouse and ClearCompany.
If hiring an employee is difficult, retaining an employee is even more challenging. There are factors in a company that make an employee stay or move to their next job. A study which was conducted by Gallup asked employees from different organizations if theyd leave or stay if certain perks were provided to them. The study found that 37% would quit their present job and take up a new job thatll allow them to work remotely part-time. 54% would switch for monetary bonuses, 51% for flexible working hours and 51% for employers offering retirement plans with pensions [4]. Though employee retention depends on various factors, it is imperative for an HR professional to understand, manage and predict employee attrition.
Machine learning HR tools provide valuable data and insights into the above mentioned factors and help HR professionals make decisions regarding employing someone (or not) more efficiently. By understanding this data about employee turnover, they are in a better position to take corrective measures well in advance to eliminate or minimize the issues.
An engaged employee is one who is involved in, committed to and enthusiastic about their work and workplace. The State of the Global Workforce report by Gallop found that 85% of the employees in the workplace are disengaged. Translation: Majority of the workforce views their workplace negatively or only does the bare minimum to get through the day, with little to no attachment to their work or workplace. The study further addresses why employee engagement is necessary. It found that offices with more engaged employees result in 10% higher customer metrics, 17% higher productivity, 20% more sales and 21% more profitability. Moreover, it found that highly engaged workplaces saw 41% less absenteeism [5].
Machine learning HR software helps the human resource department in making the employees more engaged. The insights provided by HR analytics by machine learning software help the HR team significantly in increasing employee productivity and reducing employee turnover rates. Software from Workometry and Glint aids immeasurable in measuring, analyzing and reporting on employee engagement and the general feeling towards their work.
The applications of machine learning in human resources we read above are already in use by HR professionals across the globe. Though the human element from human resources wont completely disappear, machine learning can guide and assist HR professionals substantially in ensuring the various functions of this department are well aligned and the strategic decisions made on a day-to-day basis are more accurate.
These are definitely exciting times for the HR industry and it is crucial that those working in this department are aware of the existing cutting-edge solutions available and the new trends that continue to develop.
The automation of HR functions like hiring & recruitment, training, development and retention has already made a profound positive effect on companies. Companies that refuse to or are slow to adapt and adopt machine learning and other new technologies will find themselves at a competitive disadvantage while those embrace them happily will flourish.
SEE ALSO:Future of Human Resource Management: HR Tech Trends of 2019
For more updates and latest tech news, keep reading iTMunch
Sources
[1] Glassdoor (2015) Why is Hiring Taking Longer, New Insights from Glassdoor Data [Online] Available from: https://www.glassdoor.com/research/app/uploads/sites/2/2015/06/GD_Report_3-2.pdf [Accessed December 2020]
[2] [Society for Human Resource Management (2016) 2016 Human Capital Benchmarking Report [Online] Available from: https://www.ebiinc.com/wp-content/uploads/attachments/2016-Human-Capital-Report.pdf [Accessed December 2020]
[3] Capterra (2015) Recruiting Software Impact Report [Online] Available from: https://www.capterra.com/recruiting-software/impact-of-recruiting-software-on-businesses [Accessed December 2020]
[4] Gallup (2017) State of the American Workplace Report [Online] Available from: https://www.gallup.com/workplace/238085/state-american-workplace-report-2017.aspx [Accessed December 2020]
[5] Gallup (2017) State of the Global Workplace [Online] Available from: https://www.gallup.com/workplace/238079/state-global-workplace-2017.aspx#formheader [Accessed December 2020]
Image Courtesy
Image 1: Background vector created by starline http://www.freepik.com
Image 2: Business photo created by yanalya http://www.freepik.com
Here is the original post:
Machine learning in human resources: how it works & its real-world applications - iTMunch
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]