Machine Learning – India | IBM

Machine-learning techniques are required to improve the accuracy of predictive models. Depending on the nature of the business problem being addressed, there are different approaches based on the type and volume of the data. In this section, we discuss the categories of machine learning.

Supervised learning

Supervised learning typically begins with an established set of data and a certain understanding of how that data is classified. Supervised learning is intended to find patterns in data that can be applied to an analytics process. This data has labeled features that define the meaning of data. For example, you can create a machine-learning application that distinguishes between millions of animals, based onimages and written descriptions.

Unsupervised learning

Unsupervised learning is used when the problem requires a massive amount of unlabeled data. For example, social media applications, such as Twitter, Instagram and Snapchat, all have large amounts of unlabeled data. Understanding the meaning behind this data requires algorithms that classify the data based on the patterns or clusters it finds. Unsupervised learning conducts an iterative process, analyzing data without human intervention. It is used with email spam-detecting technology. There are far too many variables in legitimate and spam emails for an analyst to tag unsolicited bulk email. Instead, machine-learning classifiers, based on clustering and association, are applied to identify unwanted email.

Reinforcement learning

Reinforcement learning is a behavioral learning model. The algorithm receives feedback from the data analysis, guiding the user to the best outcome. Reinforcement learning differs from other types of supervised learning, because the system isnt trained with the sample data set. Rather, the system learns through trial and error. Therefore, a sequence of successful decisions will result in the process being reinforced, because it best solves the problem at hand.

Deep learning

Deep learning is a specific method of machine learning that incorporates neural networks in successive layers to learn from data in an iterative manner. Deep learning is especially useful when youre trying to learn patterns from unstructured data. Deep learning complex neural networks are designed to emulate how the human brain works, so computers can be trained to deal with poorly defined abstractions and problems. The average five-year-old child can easily recognize the difference between his teachers face and the face of the crossing guard. In contrast, the computer must do a lot of work to figure out who is who. Neural networks and deep learning are often used in image recognition, speech, and computer vision applications.

See the original post here:
Machine Learning - India | IBM

Related Posts

Comments are closed.