Machine Learning Patentability In 2019: 5 Cases Analyzed And Lessons Learned Part 2 – Mondaq News Alerts
To print this article, all you need is to be registered or login on Mondaq.com.
This article is the second in a five-part series. Each of thesearticles relates to the state of machine-learning patentability inthe United States during 2019. Each of these articles describe onecase in which the PTAB reversed an Examiner's Section-101rejection of a machine-learning-based patent application'sclaims. The first article of thisseries described the USPTO's 2019 Revised Patent Subject Matter Eligibility Guidance (2019PEG), which was issued on January 7, 2019. The 2019 PEG changed theanalysis provided by Examiners in rejecting patents under Section 1011 of thepatent laws, and bythe PTAB in reviewing appeals from theseExaminer rejections. The first article of this series alsoincludes a case that illustrates the effect of reciting AIcomponents in the claims of a patent application. The followingsection of this article describes another case where the PTABapplied the 2019 PEG to a machine-learning-based patent andconcluded that the Examiner was wrong.
Case 2: Appeal 2018-0044592 (Decided June 21,2019)
This case involves the PTAB reversing the Examiner's Section101 rejections of claims of the 14/316,186 patent application. Thisapplication relates to "a probabilistic programming compilerthat generates data-parallel inference code." The Examinercontended that "the claims are directed to the abstract ideaof 'mathematical relationships,' which the Examiner appearsto conclude are [also] mental processes i.e., identifying aparticular inference algorithm and producing inferencecode."
The PTAB quickly dismissed the "mathematical concept"category of abstract ideas. The PTAB stated: "the specificmathematical algorithm or formula is not explicitly recited in theclaims. As such, under the recent [2019 PEG], the claims do notrecite a mathematical concept." This is the same reasoningthat was provided for the PTAB decision in the previous article,once again requiring that a mathematical algorithm be"explicitly recited." As explained before, the 2019 PEGdoes not use the language "explicitly recited," so thePTAB's reasoning is not exactly lined-up with the language ofthe 2019 PEG however, the PTAB's ultimate conclusion isconsistent with the 2019 PEG.
Next, the PTAB addressed and dismissed the "organizinghuman activity" category of abstract ideas just as quickly.Then, the PTAB moved on to the third category of abstract ideas:"mental processes." The PTAB noted the following relevantlanguage from the specification of the patent application:
There are many different inference algorithms, most of which areconceptually complicated and difficult to implement at scale.. . .Probabilistic programming is a way to simplify the application ofmachine learning based on Bayesian inference.. . .Doing inference on probabilistic programs is computationallyintensive and challenging. Most of the algorithms developed toperform inference are conceptually complicated.
The PTAB opined that the method is complicated, based at leastpartially on the specification explicitly stating that the methodis complicated. Then, in determining whether the method of theclaims is able to be performed in the human mind, the PTAB foundthat this language from the specification was sufficient evidenceto prove the truth of the matter it asserted (i.e., that the methodis complicated). The PTAB did not seem to find the self-servingnature of the statements in the specification to be an issue.
The PTAB then stated:
In other words, when read in light of the Specification, theclaimed 'identifying a particular inference algorithm' isdifficult and challenging for non-experts due to theircomputational complexity. . . . Additionally, Appellant'sSpecification explicitly states that 'the compiler thengenerates inference code' not an individual using his/her mindor pen and paper.
First, as explained above, it seems that the PTAB used theassertions of "complexity" made in the specification toconclude that the method is complex and cannot be a mental process.Second, the PTAB seems to have used the fact that the algorithm isnot actually performed in the human mind as evidence that it cannotpractically be performed in the human mind. Footnote 14 of the 2019PEG states:
If a claim, under its broadest reasonable interpretation, coversperformance in the mind but for the recitation of generic computercomponents, then it is still in the mental processes categoryunless the claim cannot practically be performed in the mind.
Accordingly, the fact that the patent application provides thatthe method is performed on a computer, and not performed in a humanmind, should not be the sole reason for determining that it is nota mental process. However, as the PTAB demonstrated in thisopinion, the fact that a method is performed on a computer may beused as corroborative evidence for the argument that the method isnot a mental process.
This case illustrates:
(1) the probabilistic programming compiler that generatesdata-parallel inference code was held to not be an abstract idea,in this context;(2) reciting in the specification that the method is"complicated" did not seem to hurt the argument that themethod is in fact complicated, and is therefore not an abstractidea;(3) reciting that a method is performed on a computer, though notalone sufficient to overcome the "mental processes"category of abstract ideas, may be useful for corroborating otherevidence; and(4) the PTAB might not always use the exact language of the 2019PEG in its reasoning (e.g., the "explicitly recited"requirement), but seems to come to the same overall conclusion asthe 2019 PEG.
The next three articles will build on this background, and willprovide different examples of how the PTAB approaches reversingExaminer 101-rejections of machine-learning patents under the 2019PEG. Stay tuned for the analysis and lessons of the next case,which includes methods for overcoming 101 rejections where the PTABhas found that an abstract idea is "recited,"and focuses on Step 2A Prong 2.
Footnotes
1 35U.S.C. 101.
2 https://e-foia.uspto.gov/Foia/RetrievePdf?system=BPAI&flNm=fd2018004459-06-21-2019-1.
The content of this article is intended to provide a generalguide to the subject matter. Specialist advice should be soughtabout your specific circumstances.
POPULAR ARTICLES ON: Intellectual Property from United States
Global Advertising Lawyers Alliance (GALA)
While my seats afforded me only a so-so sight-line to the stage, I had no trouble seeing the ocean of cell phones, in the hands of adoring fans, simultaneously recording (without authorization)...
Weintraub Tobin Chediak Coleman Grodin Law Corporation
Generally, the title to a single motion picture is not entitled to trademark protection. This is the same for the title to single books, songs and other singular creative works
Cowan Liebowitz & Latman PC
What can you do to protect your goodwill if you unknowingly select an unfortunate brand name, or through no fault of your own...
Read the original post:
Machine Learning Patentability In 2019: 5 Cases Analyzed And Lessons Learned Part 2 - Mondaq News Alerts
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]