Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution … – Nature.com

Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444456 (2001).

Article CAS PubMed Google Scholar

Verkman, A. S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27, 2733 (2002).

Article CAS PubMed Google Scholar

Mach, R. & Wohland, T. Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett. 588, 35713584 (2014).

Article PubMed Google Scholar

Lippincott-Schwartz, J., Snapp, E. L. & Phair, R. D. The development and enhancement of FRAP as a key tool for investigating protein dynamics. Biophys. J. 115, 11461155 (2018).

Article CAS PubMed PubMed Central Google Scholar

Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 40294042 (2005).

Article CAS PubMed PubMed Central Google Scholar

Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 8389 (2006).

Article CAS PubMed Google Scholar

Elson, E. L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 28552870 (2011).

Article CAS PubMed PubMed Central Google Scholar

Krieger, J. W. et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10, 19481974 (2015).

Article CAS PubMed Google Scholar

Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155157 (2008).

Article CAS PubMed Google Scholar

Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281289 (2014).

Article CAS PubMed PubMed Central Google Scholar

Cognet, L., Leduc, C. & Lounis, B. Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr. Opin. Chem. Biol. 20, 7885 (2014).

Article CAS PubMed Google Scholar

Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).

Article PubMed Google Scholar

Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 73317376 (2017).

Article CAS PubMed Google Scholar

Beheiry, M. E., Dahan, M. & Masson, J.-B. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12, 594595 (2015).

Article PubMed Google Scholar

Xiang, L., Chen, K., Yan, R., Li, W. & Xu, K. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nat. Methods 17, 524530 (2020).

Article CAS PubMed PubMed Central Google Scholar

Yan, R., Chen, K. & Xu, K. Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy. J. Am. Chem. Soc. 142, 1886618873 (2020).

Article CAS PubMed PubMed Central Google Scholar

Xiang, L., Chen, K. & Xu, K. Single molecules are your Quanta: a bottom-up approach toward multidimensional super-resolution microscopy. ACS Nano 15, 1248312496 (2021).

Article CAS PubMed PubMed Central Google Scholar

Schuster, J., Cichos, F. & von Borczyskowski, C. Diffusion measurements by single-molecule spot-size analysis. J. Phys. Chem. A 106, 54035406 (2002).

Article CAS Google Scholar

Zareh, S. K., DeSantis, M. C., Kessler, J. M., Li, J.-L. & Wang, Y. M. Single-image diffusion coefficient measurements of proteins in free solution. Biophys. J. 102, 16851691 (2012).

Article CAS PubMed PubMed Central Google Scholar

Serag, M. F., Abadi, M. & Habuchi, S. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations. Nat. Commun. 5, 5123 (2014).

Article CAS PubMed Google Scholar

Mckl, L., Roy, A. R. & Moerner, W. E. Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomed. Opt. Express 11, 16331661 (2020).

Article PubMed PubMed Central Google Scholar

Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458464 (2018).

Article CAS Google Scholar

Zhang, P. et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913916 (2018).

Article CAS PubMed PubMed Central Google Scholar

Zelger, P. et al. Three-dimensional localization microscopy using deep learning. Opt. Express 26, 3316633179 (2018).

Article CAS PubMed Google Scholar

Kim, T., Moon, S. & Xu, K. Information-rich localization microscopy through machine learning. Nat. Commun. 10, 1996 (2019).

Article PubMed PubMed Central Google Scholar

Hershko, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 27, 61586183 (2019).

Article CAS PubMed Google Scholar

Mckl, L., Petrov, P. N. & Moerner, W. E. Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. Appl. Phys. Lett. 115, 251106 (2019).

Article PubMed PubMed Central Google Scholar

Zhang, Z., Zhang, Y., Ying, L., Sun, C. & Zhang, H. F. Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy. Opt. Lett. 44, 58645867 (2019).

Article CAS PubMed PubMed Central Google Scholar

Gaire, S. K. et al. Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomed. Opt. Express 11, 27052721 (2020).

Article CAS Google Scholar

Mckl, L., Roy, A. R., Petrov, P. N. & Moerner, W. E. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proc. Natl Acad. Sci. 117, 6067 (2020).

Article PubMed Google Scholar

Nehme, E. et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 17, 734740 (2020).

Article CAS PubMed PubMed Central Google Scholar

Speiser, A. et al. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods 18, 10821090 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cascarano, P. et al. DeepCEL0 for 2D single-molecule localization in fluorescence microscopy. Bioinformatics 38, 14111419 (2022).

Article CAS PubMed Google Scholar

Spilger, R. et al. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Vol. 11045 (eds. Stoyanov, D. et al.) 128136 (Springer International Publishing, 2018).

Newby, J. M., Schaefer, A. M., Lee, P. T., Forest, M. G. & Lai, S. K. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proc. Natl Acad. Sci. USA 115, 90269031 (2018).

Article CAS PubMed PubMed Central Google Scholar

Muoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).

Article PubMed PubMed Central Google Scholar

Kowalek, P., Loch-Olszewska, H. & Szwabiski, J. Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach. Phys. Rev. E 100, 032410 (2019).

Article CAS PubMed Google Scholar

Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185192 (2019).

Article CAS PubMed PubMed Central Google Scholar

Pinholt, H. D., Bohr, S. S.-R., Iversen, J. F., Boomsma, W. & Hatzakis, N. S. Single-particle diffusional fingerprinting: a machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc. Natl Acad. Sci. 118, e2104624118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Pineda, J. et al. Geometric deep learning reveals the spatiotemporal features of microscopic motion. Nat. Mach. Intell. 5, 7182 (2023).

Article Google Scholar

He, K., Zhang, X., Ren, S. & Sun, J. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770778 (IEEE, 2016).

Ioffe, S. & Szegedy, C. in Proceedings of the 32nd International Conference on Machine Learning 448456 (PMLR, 2015).

Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv https://doi.org/10.48550/arXiv.1710.05941 (2017).

Nair, V. & Hinton, G. E. in Proc. 27th International Conference on International Conference on Machine Learning 807814 (Omnipress, 2010).

Choi, A. A. et al. Displacement statistics of unhindered single molecules show no enhanced diffusion in enzymatic reactions. J. Am. Chem. Soc. 144, 48394844 (2022).

Article CAS PubMed PubMed Central Google Scholar

Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. arXiv https://doi.org/10.48550/arXiv.1703.06907 (2017).

Filippov, A., Ordd, G. & Lindblom, G. Sphingomyelin structure influences the lateral diffusion and Raft formation in lipid Bilayers. Biophys. J. 90, 20862092 (2006).

Article CAS PubMed Google Scholar

Mach, R. & Hof, M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta BBA Biomembr. 1798, 13771391 (2010).

Article Google Scholar

Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 1891118916 (2006).

Article CAS PubMed PubMed Central Google Scholar

Maekawa, T. et al. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers. Phys. Chem. Chem. Phys. 21, 1668616693 (2019).

Article CAS PubMed Google Scholar

Kuo, C. & Hochstrasser, R. M. Super-resolution microscopy of lipid bilayer phases. J. Am. Chem. Soc. 133, 46644667 (2011).

Article CAS PubMed PubMed Central Google Scholar

Yan, R., Wang, B. & Xu, K. Functional super-resolution microscopy of the cell. Curr. Opin. Chem. Biol. 51, 9297 (2019).

Article CAS PubMed Google Scholar

Continued here:
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution ... - Nature.com

Related Posts

Comments are closed.