Machine learning security needs new perspectives and incentives – TechTalks
At this years International Conference on Learning Representations (ICLR), a team of researchers from the University of Maryland presented an attack technique meant to slow down deep learning models that have been optimized for fast and sensitive operations. The attack, aptly named DeepSloth, targets adaptive deep neural networks, a range of deep learning architectures that cut down computations to speed up processing.
Recent years have seen growing interest in the security of machine learning and deep learning, and there are numerous papers and techniques on hacking and defending neural networks. But one thing made DeepSloth particularly interesting: The researchers at the University of Maryland were presenting a vulnerability in a technique they themselves had developed two years earlier.
In some ways, the story of DeepSloth illustrates the challenges that the machine learning community faces. On the one hand, many researchers and developers are racing to make deep learning available to different applications. On the other hand, their innovations cause new challenges of their own. And they need to actively seek out and address those challenges before they cause irreparable damage.
One of the biggest hurdles of deep learning the computational costs of training and running deep neural networks. Many deep learning models require huge amounts of memory and processing power, and therefore they can only run on servers that have abundant resources. This makes them unusable for applications that require all computations and data to remain on edge devices or need real-time inference and cant afford the delay caused by sending their data to a cloud server.
In the past few years, machine learning researchers have developed several techniques to make neural networks less costly. One range of optimization techniques called multi-exit architecture stops computations when a neural network reaches acceptable accuracy. Experiments show that for many inputs, you dont need to go through every layer of the neural network to reach a conclusive decision. Multi-exit neural networks save computation resources and bypass the calculations of the remaining layers when they become confident about their results.
In 2019, Yigitan Kaya, a Ph.D. student in Computer Science at the University of Maryland, developed a multi-exit technique called shallow-deep network, which could reduce the average inference cost of deep neural networks by up to 50 percent. Shallow-deep networks address the problem of overthinking, where deep neural networks start to perform unneeded computations that result in wasteful energy consumption and degrade the models performance. The shallow-deep network was accepted at the 2019 International Conference on Machine Learning (ICML).
Early-exit models are a relatively new concept, but there is a growing interest, Tudor Dumitras, Kayas research advisor and associate professor at the University of Maryland, told TechTalks. This is because deep learning models are getting more and more expensive computationally, and researchers look for ways to make them more efficient.
Dumitras has a background in cybersecurity and is also a member of the Maryland Cybersecurity Center. In the past few years, he has been engaged in research on security threats to machine learning systems. But while a lot of the work in the field focuses on adversarial attacks, Dumitras and his colleagues were interested in finding all possible attack vectors that an adversary might use against machine learning systems. Their work has spanned various fields including hardware faults, cache side-channel attacks, software bugs, and other types of attacks on neural networks.
While working on the deep-shallow network with Kaya, Dumitras and his colleagues started thinking about the harmful ways the technique might be exploited.
We then wondered if an adversary could force the system to overthink; in other words, we wanted to see if the latency and energy savings provided by early exit models like SDN are robust against attacks, he said.
Dumitras started exploring slowdown attacks on shallow-deep networks with Ionut Modoranu, then a cybersecurity research intern at the University of Maryland. When the initial work showed promising results, Kaya and Sanghyun Hong, another Ph.D. student at the University of Maryland, joined the effort. Their research eventually culminated into the DeepSloth attack.
Like adversarial attacks, DeepSloth relies on carefully crafted input that manipulates the behavior of machine learning systems. However, while classic adversarial examples force the target model to make wrong predictions, DeepSloth disrupts computations. The DeepSloth attack slows down shallow-deep networks by preventing them from making early exits and forcing them to carry out the full computations of all layers.
Slowdown attacks have the potential ofnegating the benefits ofmulti-exit architectures, Dumitras said.These architectures can halve the energy consumption of a deep neural network model at inference time, and we showed that for any input we can craft a perturbation that wipes out those savings completely.
The researchers findings show that the DeepSloth attack can reduce the efficacy of the multi-exit neural networks by 90-100 percent. In the simplest scenario, this can cause a deep learning system to bleed memory and compute resources and become inefficient at serving users.
But in some cases, it can cause more serious harm. For example, one use of multi-exit architectures involves splitting a deep learning model between two endpoints. The first few layers of the neural network can be installed on an edge location, such as a wearable or IoT device. The deeper layers of the network are deployed on a cloud server. The edge side of the deep learning model takes care of the simple inputs that can be confidently computed in the first few layers. In cases where the edge side of the model does not reach a conclusive result, it defers further computations to the cloud.
In such a setting, the DeepSloth attack would force the deep learning model to send all inferences to the cloud. Aside from the extra energy and server resources wasted, the attack could have much more destructive impact.
In a scenario typical for IoT deployments, where the model is partitioned between edge devices and the cloud, DeepSloth amplifies the latency by 1.55X, negating the benefits of model partitioning, Dumitras said. This could cause the edge device to miss critical deadlines, for instance in an elderly monitoring program that uses AI to quickly detect accidents and call for help if necessary.
While the researchers made most of their tests on deep-shallow networks, they later found that the same technique would be effective on other types of early-exit models.
As with most works on machine learning security, the researchers first assumed that an attacker has full knowledge of the target model and has unlimited computing resources to craft DeepSloth attacks. But the criticality of an attack also depends on whether it can be staged in practical settings, where the adversary has partial knowledge of the target and limited resources.
In most adversarial attacks, the attacker needs to have full access to the model itself, basically, they have an exact copy of the victim model, Kaya told TechTalks. This, of course, is not practical in many settings where the victim model is protected from outside, for example with an API like Google Vision AI.
To develop a realistic evaluation of the attacker, the researchers simulated an adversary who doesnt have full knowledge of the target deep learning model. Instead, the attacker has asurrogatemodel on which he tests and tunes the attack. The attacker thentransfers the attack to the actual target. The researchers trained surrogate models that have different neural network architectures, different training sets, and even different early-exit mechanisms.
We find that the attacker that uses a surrogate can still cause slowdowns (between 20-50%) in the victim model, Kaya said.
Such transfer attacks are much more realistic than full-knowledge attacks, Kaya said. And as long as the adversary has a reasonable surrogate model, he will be able to attack a black-box model, such as a machine learning system served through a web API.
Attacking a surrogate is effective because neural networks that perform similar tasks (e.g., object classification) tend to learn similar features (e.g., shapes, edges, colors), Kaya said.
Dumitras says DeepSloth is just the first attack that works in this threat model, and he believes more devastating slowdown attacks will be discovered. He also pointed out that, aside from multi-exit architectures, other speed optimization mechanisms are vulnerable to slowdown attacks. His research team tested DeepSloth on SkipNet, a special optimization technique for convolutional neural networks (CNN). Their findings showed that DeepSloth examples crafted for multi-exit architecture also caused slowdowns in SkipNet models.
This suggests thatthe two different mechanisms might share a deeper vulnerability, yet to be characterized rigorously, Dumitras said. I believe that slowdown attacks may become an important threat in the future.
The researchers also believe that security must be baked into the machine learning research process.
I dont think any researcher today who is doing work on machine learning is ignorant of the basic security problems. Nowadays even introductory deep learning courses include recent threat models like adversarial examples, Kaya said.
The problem, Kaya believes, has to do with adjusting incentives. Progress is measured on standardized benchmarks and whoever develops a new technique uses these benchmarks and standard metrics to evaluate their method, he said, adding that reviewers who decide on the fate of a paper also look at whether the method is evaluated according to their claims on suitable benchmarks.
Of course, when a measure becomes a target, it ceases to be a good measure, he said.
Kaya believes there should be a shift in the incentives of publications and academia. Right now, academics have a luxury or burden to make perhaps unrealistic claims about the nature of their work, he says. If machine learning researchers acknowledge that their solution will never see the light of day, their paper might be rejected. But their research might serve other purposes.
For example, adversarial training causes large utility drops, has poor scalability, and is difficult to get right, limitations that are unacceptable for many machine learning applications. But Kaya points out that adversarial training can have benefits that have been overlooked, such as steering models toward becoming more interpretable.
One of the implications of too much focus on benchmarks is that most machine learning researchers dont examine the implications of their work when applied to real-world settings and realistic settings.
Our biggest problem is that we treat machine learning security as an academic problem right now. So the problems we study and the solutions we design are also academic, Kaya says. We dont know if any real-world attacker is interested in using adversarial examples or any real-world practitioner in defending against them.
Kaya believes the machine learning community should promote and encourage research in understanding the actual adversaries of machine learning systems rather than dreaming up our own adversaries.
And finally, he says that authors of machine learning papers should be encouraged to do their homework and find ways to break their own solutions, as he and his colleagues did with the shallow-deep networks. And researchers should be explicit and clear about the limits and potential threats of their machine learning models and techniques.
If we look at the papers proposing early-exit architectures, we see theres no effort to understand security risks although they claim that these solutions are of practical value, he says. If an industry practitioner finds these papers and implements these solutions, they are not warned about what can go wrong. Although groups like ours try to expose potential problems, we are less visible to a practitioner who wants to use an early-exit model. Even including a paragraph about the potential risks involved in a solution goes a long way.
More:
Machine learning security needs new perspectives and incentives - TechTalks
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]