Machine Learning Will be one of the Best Ways to Identify Habitable Exoplanets – Universe Today
The field of extrasolar planet studies is undergoing a seismic shift. To date, 4,940 exoplanets have been confirmed in 3,711 planetary systems, with another 8,709 candidates awaiting confirmation. With so many planets available for study and improvements in telescope sensitivity and data analysis, the focus is transitioning from discovery to characterization. Instead of simply looking for more planets, astrobiologists will examine potentially-habitable worlds for potential biosignatures.
This refers to the chemical signatures associated with life and biological processes, one of the most important of which is water. As the only known solvent that life (as we know it) cannot exist, water is considered the divining rod for finding life. In a recent study, astrophysicists Dang Pham and Lisa Kaltenegger explain how future surveys (when combined with machine learning) could discern the presence of water, snow, and clouds on distant exoplanets.
Dang Pham is a graduate student with the David A. Dunlap Department of Astronomy & Astrophysics at the University of Toronto, where he specializes in planetary dynamics research. Lisa Kaltenegger is an Associate Professor in Astronomy at Cornell University, the Director of the Carl Sagan Institute, and a world-leading expert in modeling potentially habitable worlds and characterizing their atmospheres.
Water is something that all life on Earth depends on, hence its importance for exoplanet and astrobiological surveys. As Lisa Kaltenegger told Universe Today via email, this importance is reflected in NASAs slogan just follow the water which also inspired the title of their paper:
Liquid water on a planets surface is one of the smoking guns for potential life I say potential here because we dont know what else we need to get life started. But liquid water is a great start. So we used NASAs slogan of Just follow the water and asked, how can we find water on the surface of rocky exoplanets in the Habitable Zone? Doing spectroscopy is time intensive, thus we are searching for a faster way to initially identify promising planets those with liquid water on it.
Currently, astronomers have been limited to looking for Lyman-alpha line absorption, which indicates the presence of hydrogen gas in an exoplanets atmosphere. This is a byproduct of atmospheric water vapor thats been exposed to solar ultraviolet radiation, causing it to become chemically disassociated into hydrogen and molecular oxygen (O2) the former of which is lost to space while the latter is retained.
This is about to change, thanks to next-generation telescopes like the James Webb (JWST) and Nancy Grace Roman Space Telescopes (RST), as well as next-next-generation observatories like the Origins Space Telescope, the Habitable Exoplanet Observatory (HabEx), and the Large UV/Optical/IR Surveyor (LUVOIR). There are also ground-based telescopes like the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the Thirty Meter Telescope (TMT).
Thanks to their large primary mirrors and advanced suite of spectrographs, chronographs, adaptive optics, these instruments will be able to conduct Direct Imaging studies of exoplanets. This consists of studying light reflected directly from an exoplanets atmosphere or surface to obtain spectra, allowing astronomers to see what chemical elements are present. But as they indicate in their paper, this is a time-intensive process.
Astronomers start by observing thousands of stars for periodic dips in brightness, then analyzing the light curves for signs of chemical signatures. Currently, exoplanet researchers and astrobiologists rely on amateur astronomers and machine algorithms to sort through the volumes of data their telescopes obtain. Looking ahead, Pham and Kaltenegger show how more advanced machine learning will be crucial.
As they indicate, MI techniques will allow astronomers to conduct the initial characterizations of exoplanets more rapidly, allowing astronomers to prioritize targets for follow-up observations. By following the water, astronomers will be able to dedicate more of an observatorys valuable survey time to exoplanets that are more likely to provide significant returns.
Next-generation telescopes will look for water vapor in the atmosphere of planets and water on the surface of planets, said Kaltenegger. Of course, to find water on the surface of planets, you should look [for water in its] liquid, solid, and gaseous forms, as we did in our paper.
Machine learning allows us to quickly identify optimal filters, as well as the trade-off in accuracy at various signal-to-noise ratios, added Pham. In the first task, using [the open-source algorithm] XGBoost, we get a ranking of which filters are most helpful for the algorithm in its tasks of detecting water, snow, or cloud. In the second task, we can observe how much better the algorithm performs with less noise. With that, we can draw a line where getting more signal would not correspond to much better accuracy.
To make sure their algorithm was up to the task, Pham and Kaltenegger did some considerable calibrating. This consisted of creating 53,130 spectra profiles of a cold Earth with various surface components including snow, water, and water clouds. They then simulated the spectra for this water in terms of atmosphere and surface reflectivity and assigned color profiles. As Pham explained:
The atmosphere was modeled using Exo-Prime2 Exo-Prime2 has been validated by comparison to Earth in various missions. The reflectivity of surfaces like snow and water are measured on Earth by USGS. We then create colors from these spectra. We train XGBoost on these colors to perform three separate goals: detecting the existence of water, the existence of clouds, and the existence of snow.
This trained XGBoost showed that clouds and snow are easier to identify than water, which is expected since clouds and snow have a much higher albedo (greater reflectivity of sunlight) than water. They further identified five optimal filters that worked extremely well for the algorithm, all of which were 0.2 micrometers broad and in the visible light range. The final step was to perform a mock probability assessment to evaluate their planet model regarding liquid water, snow, and clouds from the set of five optimal filters they identified.
Finally, we [performed] a brief Bayesian analysis using Markov-Chain Monte Carlo (MCMC) to do the same task on the five optimal filters, as a non-machine learning method to validate our finding, said Pham. Our findings there are similar: water is harder to detect, but identifying water, snow, and cloud through photometry is feasible.
Similarly, they were surprised to see how well the trained XGBoost could identify water on the surface of rocky planets based on color alone. According to Kaltenegger, this is what filters really are: a means for separating light into discreet bins. Imagine a bin for all red light (the red filter), then a bin for all the green light, from light to dark green (the green filter), she said.
Their proposed method does not identify water in exoplanet atmospheres but on an exoplanets surface via photometry. In addition, it will not work with the Transit Method (aka. Transit Photometry), which is currently the most widely-used and effective means of exoplanet detection. This method consists of observing distant stars for periodic dips in luminosity attributed to exoplanets passing in front of the star (aka. transiting) relative to the observer.
On occasion, astronomers can obtain spectra from an exoplanets atmosphere as it makes a transit a process known as transit spectroscopy. As the suns light passes through the exoplanets atmosphere relative to the observer, astronomers will analyze it with spectrometers to determine what chemicals are there. Using its sensitive optics and suite of spectrometers, the JWST will rely on this method to characterize exoplanet atmospheres.
But as Pham and Kaltenegger indicate, their algorithm will only work with reflected light from the direct imaging of exoplanets. This is especially good news considering that spectroscopy obtained through Direct Imaging studies is likely to reveal more about exoplanets not just the chemical composition of their atmospheres. According to Kaltenegger, this creates all kinds of opportunities for next-generation missions:
This is opening up the opportunity for smaller space missions like the Nancy Roman telescope to help identify worlds that could host life. And for larger upcoming telescopes as recommended by the decadal survey it allows them to scan the rocky planets in the Habitable Zone for the most promising candidates those with water on their surface, so we spend the time characterizing the most interesting ones and effectively search for life on planets that have great conditions for it to get started.
The paper that describes their findings was recently published in the Monthly Notices of the Royal Astronomical Society (MNRAS).
Further Reading: arXiv
Like Loading...
The rest is here:
Machine Learning Will be one of the Best Ways to Identify Habitable Exoplanets - Universe Today
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]