Machine learningbased observation-constrained projections reveal elevated global socioeconomic risks from wildfire – Nature.com
Applying traditional EC for global fire carbon emissions
The recently developed emergent constraint (EC) approach has demonstrated robust capability in reducing the uncertainty in characterizing or projecting Earth system variables simulated by a multimodel ensemble25,26. The basic concept of EC is that, despite the distinct model structures and parameters, there exists various across-model relationships (emergent constraints) between pairs of quantities when we analyze outputs from multiple models27. Therefore, the EC concept is especially useful to derive the relationship between a variable that is difficult or impossible to measure (e.g., future wildfires) and a second, measurable variable (e.g., historical wildfires), across multiple ESMs. We start with global total values and find significant linear relationship between historical and future global total fire carbon emission across 38 ensemble members of 13 ESMs (Supplementary Fig.2a). Because we are particularly interested in the spatial distribution of future wildfires, which are critical for quantifying future socioeconomic risks from wildfires, we further apply the EC concept to every grid cell of the globe, using either a single constraint variable (historical fire carbon emissions) or multiple constraint variables (the atmospheric and terrestrial variables in Supplementary Table2), with the latter being shown in Supplementary Fig.2b. We find insignificant linear relationships between these historical fire-relevant variables and future wildfires in the historically fire-prone regions across the analyzed 38 members of 13 ESMs. The failure of the traditional EC concept in constraining fire carbon emissions at local scales could be attributed to the highly nonlinear interactions between fire and its cross-section drivers, which is likely inadequately captured by the linear relationship under the EC assumption. Therefore, we further develop an MLT-based constraint to deal with the complex response of wildfires to environmental and socioeconomic drivers.
MLT provide powerful tools for capturing the nonlinear and interactive roles among regulators of an Earth system feature, thereby facilitating effective, multivariate constraint on wildfire activity, which represents an integrated function of climate, terrestrial ecosystem, and socioeconomic conditions. MLT have been widely applied for identifying empirical regulators32 and building prediction systems for global and regional fire activity35. To constrain the projected fire carbon emissions simulated by 13 ESMs using observational data, the current study establishes an MLT-based emergent relationship between the future fire carbon emissions and historical fire carbon emissions, climate, terrestrial ecosystem, and socioeconomic drivers.
Here, we use MLT to examine the empirical relationships between historical, observed influencing factors of wildfires and future fire carbon emissions from ESMs and then feed observational data into the trained machine learning models (Supplementary Fig.3). To train the MLT to use historical states for the prediction of future fire carbon emission, the historical and future simulations from the SSP (Shared Socioeconomic Pathway) 5-8536, a high-emission scenario, are analyzed for the currently available 13 ESMs in CMIP6 (Supplementary Table1). A subset of these ESMs (i.e., nine ESMs that provide simulation in a lower-emission scenario, SSP2-45) is also analyzed to examine the dependence of fire regimes on socioeconomic pathway. The training is conducted using the spatial sample of decadal mean predictors and target variable, both individually from each ESM and from their aggregation, with the later referred to as multimodel mean and subsequently analyzed for projecting fire carbon emission and its socioeconomic risks. Corresponding to the spatial resolution of the observational products of fire carbon emission, all model outputs are bilinearly interpolated to a 0.250.25 grid, resulting in a spatial sample of 11,325 points per model for the training. To perform the observational constraint, the historical observed predictors are then fed into the trained machine learning models. The historical predictors are listed in Supplementary Table2 with their observational data sources, temporal coverages, and spatial resolutions. For the atmospheric and terrestrial variables, the annual mean value and climatology in each of 12 calendar months are included as predictors. This training and observational constraining is performed for target decades (20112020, 20212030, 20912100), and the historical period is always 20012010. Future changes in fire carbon emission are quantified and expressed as the relative trend (% decade1) (i.e., the ratio between the absolute trend and the mean value during the 2010s), for both the default and observation-constrained ensembles.
The current spatial sample training approach establishes a history-future relationship for each pixel using the entire global sample. To minimize local prediction errors for a certain pixel, MLT search all pixels, regardless of their geographical location, to optimize the prediction model of future fires at the target pixel. In this way, a physically robust history-future relationship is established based on the global sample of locations, whereas influences of localized features, such as socioeconomic development, on wildfire trends are naturally damped in our approach (Supplementary Figs.10 and 11). The reliability of MLT is degraded when the actual observational data space is insufficiently covered by the training (historical CMIP6 simulation) data space, namely the extrapolation uncertainty. Here, we further evaluate the data space of both observation and historical simulation of the climate and fire variables (Supplementary Fig.14), and we find all these assessed variables are largely overlapped, indicating minimal extrapolation error involved in the current MLT application.
To minimize the projection uncertainty associated with the selected machine learning algorithms, this study examines three MLTrandom forest (rf), support vector machine with Radial Basis Function Kernel (svmRadialCost), and gradient boosting machine (gbm). These three algorithms differ substantially in their function. The average among these algorithms is thus believed to better capture the complex interrelation between the historical predictors and future fire carbon emissions than any single algorithm. The MLT analysis is performed using the caret, dplyr, randomForest, kernlab, and gbm packages in the R statistical software. The prediction model is fitted for each MLT using the training data set that targets each future decade, with parameters optimized for the minimum RMSE via 10-fold cross-validationin other words, using a randomly chosen nine-tenth of the entire spatial sample (n=10,193) for model fitting and the remaining one-tenth of the entire spatial sample (n=1,132) for validation, and repeating the process 10 times. For svmRadialCost, the optimal pair of cost parameter (C) and kernel parameter sigma (sigma) is searched from 30 (tuneLength=30) C candidates and their individually associated optimal sigma. For gbm, we set the complexity of trees (interaction.depth) to 3, and learning rate (shrinkage) to 0.2, and let the train function search for the optimal number of trees from 10 to 200 with an increment of 5 (10, 15, 20, , 200). For rf, the number of variables available for splitting at each tree node (mtry) is allowed to search between 5 and 50 with an increment of 1 (5, 6, 7, , 50); the number of trees is determined by the algorithm provided by randomForest package and the train function by the caret package. The cross-validation R2s exceed 0.8 (n=1,132) for all optimized MLT and all future periods. The currently examined ESMs, MLT, and hundreds of observational data set combinations constitute a multimodel, multidata set ensemble of projected fire carbon emissions for the twenty-first century. This multimodel, multidata set ensemble allows natural quantification of uncertainty in the future projection derived from observational sources and MLT, compared with a previous single-MLT, single-observation approach67.
This MLT-based observational constraining approach is validated for a historical period using the emergent relation between the fire-climate-ecosystem-socioeconomics during 19972006 and fire carbon emission during 20072016. The spatial correlation and RMSE with the observed decadal mean fire carbon emission (n=11,325) is evaluated and compared for the constrained and unconstrained ensemble, reported in the main text (Figs.1 and 2). The RMSE and R2 produced by the traditional EC approach that constrains fire carbon emissions during 20072016 with fire carbon emissions during 19972006 are reported along with the MLT-based observational constraint in Fig.1e, f. The MLT-based observational constraining approach is also applied to six ESMs that report burned area fraction, and validation is also conducted and reported in Supplementary Fig.6.
Because the MLT are trained using the global spatial sample, we expect the performance of MLT to be sensitive to the spatial resolution of the training data set. This assumption is tested by varying the interpolation grids (1, 2.5, 5, and 10 latitude by longitude) of the ESMs and fitting MLT using this specific-resolution training data for the validation period (Supplementary Fig.7). Observational data sets at 0.25 resolution are subsequently fed into the fitted MLT models, regardless of the input model data resolution. This sensitive test sheds light on the importance of spatial resolution to our observational constraining and thereby implies potential accuracy improvement of our MLT-based observation constraint with the development of higher-resolution ESMs.
Here, we define the socioeconomic exposure to wildfires as a product of decadal mean fire carbon emission and number of people, amount of GDP, and agricultural area exposed to the burning in each grid cell, following previous definition for extreme heat68. These exposure metrics measure the amount of population, GDP, and agricultural area affected by wildfires, whose severity is represented by the amount of fire carbon emission. The projected population at 1/81/8 resolution under SSP5-85 is obtained from the National Center for Atmospheric Researchs Integrated Assessment Modeling Group and the City University of New York Institute for Demographic Research69. The projected GDP at 1km resolution under SSP5 is disaggregated from national GDP projections using nighttime light and population70. The agricultural area projection at 0.050.05 resolution under SSP5-85 is obtained from the Global Change Analysis Model and a geospatial downscaling model (Demeter)71. All the projected socioeconomic variables are resampled to 0.250.25 resolution before the calculation of exposure to fire carbon emission fraction. Future changes in socioeconomic exposure to wildfires are quantified as the relative trend (% decade1) (i.e., the ratio between the absolute trend and the mean value during the 2010s) for the default and observation-constrained ensembles. These relative changes provide direct implications on what the future would be like compared with the current state, regardless of the potential biases simulated by the default ESMs.
The mechanisms underlying the projected evolution in fire carbon emissions are explored in two tasks, addressing the importance of drivers in the historical and dynamical perspectives. The first task assesses the relative contribution of each environmental and socioeconomic drivers historical distribution to the projected future wildfire distribution, for directly understanding how the current observational constraint works (Supplementary Fig.8). The second task examines the relative contribution of each drivers projected trend to the projected wildfires trends in a specific region, for disentangling the dynamical mechanisms underlying future evolution of regional wildfires (Supplementary Fig.9). These tasks benefit from the importance score as an output of MLT. Although the calculation of importance scores varies substantially by MLT, all the importance scores qualitatively reflect relative importance of each predictor when making a prediction. For each tree in both rf and gbm, the prediction accuracy on the out-of-bag portion of the data is recorded. Then, the same is done after permuting each predictor variable. For rf, the differences are averaged for each tree and normalized by the standard error. For gbm, the importance order is first calculated for each tree and then summed up over each boosting iteration. For svm, we estimate the contribution of a single variable by training the model on all variables except that specific variable. The difference in performance between that model and the one with all variables is then considered the marginal contribution of that particular variable; such marginal contribution of each variable is standardized to derive the variables relative importance. Because we apply multiple MLT in this study, the average importance scores from these MLT are reported in the corresponding figures for robustness.
In the first task, the importance of each historical driver to future global wildfire distributions is examined in three MLT models (random forest, support vector machine, and gradient boosting machine) that are trained for projecting future fire carbon emissions (Supplementary Fig.8). For the atmospheric and terrestrial variables that include annual mean and monthly climatology as predictors, to account for the overall importance of a particular variable while considering the possible information overlapping contained in each month and annual mean, the importance of each variable is represented by the highest importance score among these 13 predictors (annual mean, January, February, , December). The importance score of each historical driver reflects the relative weight of each historical, environmental driver in determining the spatial pattern of fire carbon emissions in each future decade.
In the second task, the dynamical importance of each environmental drivers future evolution is assessed for targeted tropical regions (i.e., Amazon and Congo) and major land cover types (tropical forests, other forest, shrubland, savannas, grasslands, and croplands) in both default and constrained ensembles through the importance of each drivers trend to the projected wildfire trend. For the default ensemble, the three MLT models (random forest, support vector machine, and gradient boosting machine) are used to predict the spatial distribution of simulated trends in fire carbon emission using the simulated trends in the socioeconomic, atmospheric, and terrestrial variables that are considered in our observational constraint for wildfires, for each ESM and their multimodel mean. This analysis excludes flash rate, another predictor in constraining future wildfires, because it is not dynamically simulated by most ESMs. For the observation-constrained ensemble, we first constrain the projected atmospheric and terrestrial variables in each future decade, using a similar approach as we constrain future fire carbon emissions, for each individual ESM and their multimodel aggregation. In this constraint for environmental drivers, all the variables in Supplementary Table2 are considered as predictors, thereby achieving self-consistency of the constrained future evolution of all these fire-relevant variables. Noticing that the socioeconomic trends are determined by the SSPs, future socioeconomic developments are therefore not constrained in the current approach. Then, the same three MLT models are used to predict the spatial distribution of constrained trends in fire carbon emissions using the constrained trends in those environmental and socioeconomic drivers. For computational efficiency, only the annual mean trends in the environmental drivers are constrained and analyzed in this task. The importance scores of projected trends in socioeconomic and environmental drivers reflect their dynamic role in future evolution of wildfires in the target tropical regions. Here, the Amazon and Congo regions are shown as examples of how this analysis is applied to understand regional wildfire evolutions, though the mechanism underlying the future evolution of wildfires in other regions could be similarly explored.
Read the rest here:
Machine learningbased observation-constrained projections reveal elevated global socioeconomic risks from wildfire - Nature.com
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]
- Yielding insights: Machine learning driven imputations to fill in agricultural data gaps in surveys - World Bank - February 11th, 2025 [February 11th, 2025]
- SKUtrak Promote tool taps machine learning powered analysis to shake up way brands run promotions - Retail Technology Innovation Hub - February 11th, 2025 [February 11th, 2025]
- Machine learning approaches for resilient modulus modeling of cement-stabilized magnetite and hematite iron ore tailings - Nature.com - February 11th, 2025 [February 11th, 2025]
- The Alignment Problem: Machine Learning and Human Values - Harvard Gazette - February 11th, 2025 [February 11th, 2025]
- Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data - Nature.com - February 11th, 2025 [February 11th, 2025]
- Analyzing the influence of manufactured sand and fly ash on concrete strength through experimental and machine learning methods - Nature.com - February 11th, 2025 [February 11th, 2025]
- Machine learning prediction of glaucoma by heavy metal exposure: results from the National Health and Nutrition Examination Survey 2005 to 2008 -... - February 11th, 2025 [February 11th, 2025]
- Correlation of rivaroxaban solubility in mixed solvents for optimization of solubility using machine learning analysis and validation - Nature.com - February 11th, 2025 [February 11th, 2025]
- Characterisation of cardiovascular disease (CVD) incidence and machine learning risk prediction in middle-aged and elderly populations: data from the... - February 11th, 2025 [February 11th, 2025]
- Unlock the Secrets of AI: How Mohit Pandey Makes Machine Learning Fun! - Mi Valle - February 11th, 2025 [February 11th, 2025]