Overview of causal inference in machine learning – Ericsson
In a major operators network control center complaints are flooding in. The network is down across a large US city; calls are getting dropped and critical infrastructure is slow to respond. Pulling up the systems event history, the manager sees that new 5G towers were installed in the affected area today.
Did installing those towers cause the outage, or was it merely a coincidence? In circumstances such as these, being able to answer this question accurately is crucial for Ericsson.
Most machine learning-based data science focuses on predicting outcomes, not understanding causality. However, some of the biggest names in the field agree its important to start incorporating causality into our AI and machine learning systems.
Yoshua Bengio, one of the worlds most highly recognized AI experts, explained in a recent Wired interview: Its a big thing to integrate [causality] into AI. Current approaches to machine learning assume that the trained AI system will be applied on the same kind of data as the training data. In real life it is often not the case.
Yann LeCun, a recent Turing Award winner, shares the same view, tweeting: Lots of people in ML/DL [deep learning] know that causal inference is an important way to improve generalization.
Causal inference and machine learning can address one of the biggest problems facing machine learning today that a lot of real-world data is not generated in the same way as the data that we use to train AI models. This means that machine learning models often arent robust enough to handle changes in the input data type, and cant always generalize well. By contrast, causal inference explicitly overcomes this problem by considering what might have happened when faced with a lack of information. Ultimately, this means we can utilize causal inference to make our ML models more robust and generalizable.
When humans rationalize the world, we often think in terms of cause and effect if we understand why something happened, we can change our behavior to improve future outcomes. Causal inference is a statistical tool that enables our AI and machine learning algorithms to reason in similar ways.
Lets say were looking at data from a network of servers. Were interested in understanding how changes in our network settings affect latency, so we use causal inference to proactively choose our settings based on this knowledge.
The gold standard for inferring causal effects is randomized controlled trials (RCTs) or A/B tests. In RCTs, we can split a population of individuals into two groups: treatment and control, administering treatment to one group and nothing (or a placebo) to the other and measuring the outcome of both groups. Assuming that the treatment and control groups arent too dissimilar, we can infer whether the treatment was effective based on the difference in outcome between the two groups.
However, we can't always run such experiments. Flooding half of our servers with lots of requests might be a great way to find out how response time is affected, but if theyre mission-critical servers, we cant go around performing DDOS attacks on them. Instead, we rely on observational datastudying the differences between servers that naturally get a lot of requests and those with very few requests.
There are many ways of answering this question. One of the most popular approaches is Judea Pearl's technique for using to statistics to make causal inferences. In this approach, wed take a model or graph that includes measurable variables that can affect one another, as shown below.
To use this graph, we must assume the Causal Markov Condition. Formally, it says that subject to the set of all its direct causes, a node is independent of all the variables which are not direct causes or direct effects of that node. Simply put, it is the assumption that this graph captures all the real relationships between the variables.
Another popular method for inferring causes from observational data is Donald Rubin's potential outcomes framework. This method does not explicitly rely on a causal graph, but still assumes a lot about the data, for example, that there are no additional causes besides the ones we are considering.
For simplicity, our data contains three variables: a treatment , an outcome , and a covariate . We want to know if having a high number of server requests affects the response time of a server.
In our example, the number of server requests is determined by the memory value: a higher memory usage means the server is less likely to get fed requests. More precisely, the probability of having a high number of requests is equal to 1 minus the memory value (i.e. P(x=1)=1-z , where P(x=1) is the probability that x is equal to 1). The response time of our system is determined by the equation (or hypothetical model):
y=1x+5z+
Where is the error, that is, the deviation from the expected value of given values of and depends on other factors not included in the model. Our goal is to understand the effect of on via observations of the memory value, number of requests, and response times of a number of servers with no access to this equation.
There are two possible assignments (treatment and control) and an outcome. Given a random group of subjects and a treatment, each subject has a pair of potential outcomes: and , the outcomes Y_i (0) and Y_i (1) under control and treatment respectively. However, only one outcome is observed for each subject, the outcome under the actual treatment received: Y_i=xY_i (1)+(1-x)Y_i (0). The opposite potential outcome is unobserved for each subject and is therefore referred to as a counterfactual.
For each subject, the effect of treatment is defined to be Y_i (1)-Y_i (0) . The average treatment effect (ATE) is defined as the average difference in outcomes between the treatment and control groups:
E[Y_i (1)-Y_i (0)]
Here, denotes an expectation over values of Y_i (1)-Y_i (0)for each subject , which is the average value across all subjects. In our network example, a correct estimate of the average treatment effect would lead us to the coefficient in front of x in equation (1) .
If we try to estimate this by directly subtracting the average response time of servers with x=0 from the average response time of our hypothetical servers with x=1, we get an estimate of the ATE as 0.177 . This happens because our treatment and control groups are not inherently directly comparable. In an RTC, we know that the two groups are similar because we chose them ourselves. When we have only observational data, the other variables (such as the memory value in our case) may affect whether or not one unit is placed in the treatment or control group. We need to account for this difference in the memory value between the treatment and control groups before estimating the ATE.
One way to correct this bias is to compare individual units in the treatment and control groups with similar covariates. In other words, we want to match subjects that are equally likely to receive treatment.
The propensity score ei for subject is defined as:
e_i=P(x=1z=z_i ),z_i[0,1]
or the probability that x is equal to 1the unit receives treatmentgiven that we know its covariate is equal to the value z_i. Creating matches based on the probability that a subject will receive treatment is called propensity score matching. To find the propensity score of a subject, we need to predict how likely the subject is to receive treatment based on their covariates.
The most common way to calculate propensity scores is through logistic regression:
Now that we have calculated propensity scores for each subject, we can do basic matching on the propensity score and calculate the ATE exactly as before. Running propensity score matching on the example network data gets us an estimate of 1.008 !
We were interested in understanding the causal effect of binary treatment x variable on outcome y . If we find that the ATE is positive, this means an increase in x results in an increase in y. Similarly, a negative ATE says that an increase in x will result in a decrease in y .
This could help us understand the root cause of an issue or build more robust machine learning models. Causal inference gives us tools to understand what it means for some variables to affect others. In the future, we could use causal inference models to address a wider scope of problems both in and out of telecommunications so that our models of the world become more intelligent.
Special thanks to the other team members of GAIA working on causality analysis: Wenting Sun, Nikita Butakov, Paul Mclachlan, Fuyu Zou, Chenhua Shi, Lule Yu and Sheyda Kiani Mehr.
If youre interested in advancing this field with us, join our worldwide team of data scientists and AI specialists at GAIA.
In this Wired article, Turing Award winner Yoshua Bengio shares why deep learning must begin to understand the why before it can replicate true human intelligence.
In this technical overview of causal inference in statistics, find out whats needed to evolve AI from traditional statistical analysis to causal analysis of multivariate data.
This journal essay from 1999 offers an introduction to the Causal Markov Condition.
Go here to read the rest:
Overview of causal inference in machine learning - Ericsson
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]
- The future of PC gaming will be AI-driven - AMD confirms machine learning FSR 4 for 2025, launching in Call of Duty: Black Ops 6 - TechRadar - November 4th, 2024 [November 4th, 2024]
- Machine-Learning Platform Gives DoD Ability To ID Threat Network Activity - Defense Innovation Unit - November 4th, 2024 [November 4th, 2024]
- Machine Learning Offers a Water Bill Discount to Wealthy Portlander - Willamette Week - November 4th, 2024 [November 4th, 2024]