Prediction of ciprofloxacin resistance in hospitalized patients using machine learning | Communications Medicine – Nature.com

Smith, R. A., Mikanatha, N. M. & Read, A. F. Antibiotic resistance: A primer and call to action. Health Commun 30, 309314 (2015).

Article PubMed Google Scholar

Palumbi, S. R. Humans as the worlds greatest evolutionary force. Science 293, 17861790 (2001).

Article CAS PubMed Google Scholar

Weber, D. J. Collateral damage and what the future might hold. The need to balance prudent antibiotic utilization and stewardship with effective patient management. Int. J. Infect. Dis. 10, S17S24 (2006).

Article CAS Google Scholar

Carrara, E., Pfeffer, I., Zusman, O., Leibovici, L. & Paul, M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int. J. Antimicrob. Agents 51, 548553 (2018).

Article CAS PubMed Google Scholar

World Health Organization. Executive summary: the selection and use of essential medicines 2019: report of the 22nd WHO Expert Committee on the selection and use of essential medicines: WHO Headquarters, Geneva, 1-5 April 2019. https://apps.who.int/iris/handle/10665/325773 (2019).

Chowers, M. et al. Estimating the impact of cefuroxime versus cefazolin and amoxicillin/clavulanate use on future collateral resistance: a retrospective comparison. J. Antimicrob. Chemother 77, 19921995 (2022).

Article CAS PubMed Google Scholar

Nathwani, D. et al. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob. Resist. Infect. Control 8, 113 (2019).

Article Google Scholar

Tribble, A. C. et al. Appropriateness of antibiotic prescribing in United States childrens hospitals: a national point prevalence survey. Clin. Infect. Dis 71, e226e234 (2020).

Article PubMed Google Scholar

eEML - Electronic Essential Medicines List. https://list.essentialmeds.org/.

Loscalzo, J. et al. Harrisons Principles of Internal Medicine, (Vol. 1 & Vol. 2). (McGraw Hill Professional, 2022).

Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 25, 577589 (2010).

Article CAS PubMed Google Scholar

Thomson, C. J. The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: a 10 year perspective. J. Antimicrob. Chemother. 43, 3140 (1999).

Article CAS PubMed Google Scholar

Organization, W. H. Global antimicrobial resistance and use surveillance system (GLASS) report: 2021. (2021).

Dalhoff, A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 976273 (2012).

Article PubMed PubMed Central Google Scholar

Low, M. et al. Association between urinary community-acquired fluoroquinolone-resistant Escherichia coli and neighbourhood antibiotic consumption: a population-based case-control study. Lancet Infect. Dis. 19, 419428 (2019).

Article CAS PubMed Google Scholar

Eliopoulos, G. M., Cosgrove, S. E. & Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis 36, 14331437 (2003).

Article Google Scholar

Gottesman, B. S., Carmeli, Y., Shitrit, P. & Chowers, M. Impact of quinolone restriction on resistance patterns of Escherichia coli isolated from urine by culture in a community setting. Clin. Infect. Dis. 49, 869875 (2009).

Article CAS PubMed Google Scholar

Anahtar, M. N., Yang, J. H. & Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J. Clin. Microbiol. 59, e0126020 (2021).

Article CAS PubMed PubMed Central Google Scholar

Rawson, T. M., Ahmad, R., Toumazou, C., Georgiou, P. & Holmes, A. H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 3, 543545 (2019).

Article PubMed Google Scholar

Yelin, I. et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 25, 11431152 (2019).

Article CAS PubMed PubMed Central Google Scholar

Feretzakis, G. et al. Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics 9, 50 (2020).

Article CAS PubMed PubMed Central Google Scholar

Dan, S. et al. Prediction of fluoroquinolone resistance in gram-negative bacteria causing bloodstream infections. Antimicrob. Agents Chemother. 60, 22652272 (2016).

Article CAS PubMed PubMed Central Google Scholar

Dickstein, Y., Geffen, Y., Andreassen, S., Leibovici, L. & Paul, M. Predicting antibiotic resistance in urinary tract infection patients with prior urine cultures. Antimicrob. Agents Chemother. 60, 47174721 (2016).

Article CAS PubMed PubMed Central Google Scholar

Binuya, M. A. E., Engelhardt, E. G., Schats, W., Schmidt, M. K. & Steyerberg, E. W. Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review. BMC Med. Res. Methodol. 22, 114 (2022).

Article Google Scholar

Staffa, S. J. & Zurakowski, D. Statistical development and validation of clinical prediction models. Anesthesiology 135, 396405 (2021).

Article PubMed Google Scholar

de Hond, A. A. et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. Npj Digit. Med. 5, 113 (2022).

Google Scholar

Debray, T. P. et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. Clin. Epidemiol. 68, 279289 (2015).

Article PubMed Google Scholar

Eilers, P. H. C., Boer, J. M., van Ommen G. J. & van Houwelingen, H. C. Classification of microarray data with penalized logistic regression. in Microarrays: Optical Technologies and Informatics vol. 4266 187198 (International Society for Optics and Photonics, 2001).

Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning. vol. 1 (Springer series in statistics New York, 2001).

Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281305 (2012).

Google Scholar

Sill, J., Takcs, G., Mackey, L. & Lin, D. Feature-weighted linear stacking. ArXiv Prepr. arXiv:0911.0460 (2009).

Van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).

Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 47654774 (Curran Associates, Inc., 2017).

Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Mak. 26, 565574 (2006).

Article Google Scholar

Kerr, K. F., Brown, M. D., Zhu, K. & Janes, H. Assessing the clinical impact of risk prediction models with decision curves: guidance for correct interpretation and appropriate use. J. Clin. Oncol. 34, 2534 (2016).

Article PubMed PubMed Central Google Scholar

Python Software Foundation. Python programming language. https://www.python.org/.

NumPy Developers. NumPy: Scientific computing with Python. https://numpy.org/doc/stable/.

Pandas Developers. Pandas: Powerful data structures for data analysis and manipulation. https://pandas.pydata.org/.

Scikit-learn developers. Scikit-learn: Machine learning in Python. https://scikit-learn.org/stable/.

XGBoost: Scalable, distributed gradient boosting. https://xgboost.readthedocs.io/en/latest/.

TensorFlow Developers. TensorFlow: An end-to-end open source machine learning platform. https://www.tensorflow.org/.

Matplotlib: A comprehensive library for static, animated, and interactive visualizations in Python. https://matplotlib.org/stable/.

SHAP Developers. SHAP: A unified approach to explain the output of any machine learning model. https://shap.readthedocs.io/en/latest/.

Gallini, A. et al. Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. J. Antimicrob. Chemother. 65, 26502657 (2010).

Article CAS PubMed Google Scholar

Wang, T. et al. Predicting Antimicrobial Resistance in the Intensive Care Unit. ArXiv Prepr. ArXiv211103575 (2021).

Wojcik, G. et al. Understanding the complexities of antibiotic prescribing behaviour in acute hospitals: a systematic review and meta-ethnography. Arch. Public Health 79, 119 (2021).

Article Google Scholar

Diamant, M. et al. A game theoretic approach reveals that discretizing clinical information can reduce antibiotic misuse. Nat. Commun. 12, 113 (2021).

Article Google Scholar

Shapley, L. S. A value for n-person games. Contrib. Theory Games 2, 307317 (1953).

Google Scholar

Kumar, I. E., Venkatasubramanian, S., Scheidegger, C. & Friedler, S. Problems with Shapley-value-based explanations as feature importance measures. in International Conference on Machine Learning 54915500 (PMLR, 2020).

Chen, M. et al. Physician and Medical Student Attitudes Toward Clinical Artificial Intelligence: A Systematic Review with Cross-Sectional Survey. Available SSRN 4128867.

Mulder, M. et al. Risk factors for resistance to ciprofloxacin in community-acquired urinary tract infections due to Escherichia coli in an elderly population. J. Antimicrob. Chemother. 72, 281289 (2016).

Article PubMed Google Scholar

Arslan, H., Azap, . K., Ergnl, . & Timurkaynak, F. On behalf of the Urinary Tract Infection Study Group Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J. Antimicrob. Chemother. 56, 914918 (2005).

Article CAS PubMed Google Scholar

Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545e554 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cherny, S. S., Chowers, M. & Obolski, U. Patterns of antibiotic cross-resistance by bacterial sample source: a retrospective cohort study. medRxiv (2022).

Cherny, S. S. et al. Revealing antibiotic cross-resistance patterns in hospitalized patients through Bayesian network modelling. J. Antimicrob. Chemother 76, 239248 (2021).

Article CAS PubMed Google Scholar

Lewin-Epstein, O., Baruch, S., Hadany, L., Stein, G. & Obolski, U. Predicting antibiotic resistance in hospitalized patients by applying machine learning to electronic medical records. medRxiv 2020.06.03.20120535 https://doi.org/10.1101/2020.06.03.20120535. (2020)

Chatterjee, A. et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis. 18, e368e378 (2018).

Article CAS PubMed Google Scholar

Truong, W. R., Hidayat, L., Bolaris, M. A., Nguyen, L. & Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC-Antimicrob. Resist. 3, dlab060 (2021).

Article PubMed PubMed Central Google Scholar

Oonsivilai, M. et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a childrens hospital in Cambodia. Wellcome Open Res. 3, 131 (2018).

Article PubMed PubMed Central Google Scholar

Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H. & Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 14, 125 (2014).

Article Google Scholar

Baraz, A., Chowers, M., Nevo, D. & Obolski, U. Stable temporal relationships as a first step towards causal inference: an application to antibiotic resistance. medRxiv (2022).

Fasugba, O., Gardner, A., Mitchell, B. G. & Mnatzaganian, G. Ciprofloxacin resistance in community-and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect. Dis. 15, 116 (2015).

Here is the original post:
Prediction of ciprofloxacin resistance in hospitalized patients using machine learning | Communications Medicine - Nature.com

Related Posts

Comments are closed.