Research Rooted in Machine Learning Challenges Conventional … – National Institute of Justice
Researchers have developed a new analytical method to better understand how individuals move toward violent extremism.
Using machine learning, a form of artificial intelligence, the method reveals clusters of traits associated with possible pathways to terrorist acts. The resource may improve our understanding of how an individual becomes radicalized toward extremist violence.
The report on a scientific study that deploys those tools and blends elements of data science, sociology, and criminology is calling into question some common assumptions about violent extremism and the homegrown individuals who are motivated to engage in behaviors supporting violent jihadist ideologies. See Table 1.
Table 1 shows select key insights from the project aimed at developing a new computational methodology that can mine multiple large databases to screen for behaviors associated with violent extremism.
The study departs from the research communitys common use of demographic profiles of extremist individuals to predict violent intentions. Profiling runs the risk of relying on ethnic stereotypes in extremism studies and law enforcement practices, particularly with respect to American Muslims. According to the researchers, the method isolated the behaviors associated with potential terrorist trajectories, after being trained with thousands of text data coded by researchers.
Machine learning is an application of artificial intelligence that uses existing data to make predictions or classifications about individuals, actions, or events. The machine learns by observing many examples until it can statistically replicate them.
Researchers scanned large datasets to spot traits or experiences that are collectively associated with terrorist trajectories employing a process that blends machine learning (see What Is Machine Learning?), and an evidence-based behavioral model of radicalization associated with violence and other terrorism-related activities.
The machine-learning computational method analyzes, while learning from, copious data to isolate behaviors associated with potential terrorist trajectories.
The graph component depicts clusters of behavioral indicators that reveal those trajectories. The datasets generating those indicators include investigator notes, suspicious activity reports, and shared information. See "What Do We Mean by Graph? Defining It in Context."
This tool for understanding violent extremism is the work of Colorado State University and Brandeis University investigators, supported by the National Institute of Justice. The tool aims to isolate somewhat predictable radicalization trajectories of individuals or groups who may be moving toward violent extremism.
A key element of the work was the development of a Human-in-the-Loop system, which introduces a researcher into the data analysis. Because the data are so complex, the researcher mitigates difficulties by assisting the algorithm at key points during its training. As part of the process, the researcher writes and rewrites an algorithm to pick up key words, phrases, or sentences in texts. Then the researcher sorts those pieces of text with other text segments known to be associated with radicalization trajectories.
The Human-in-the-Loop factor is designed to help researchers code data faster, build toward a law enforcement intelligence capable of capturing key indicators, and enable researchers to transform textual data into a graph database. The system relies on a software-based framework designed to help overcome challenges posed by massive data volumes and complex extremist behaviors.
The research stems from the premise that radicalization is the product of deepening engagements that can be observed in changing behaviors. This concept is based on researchers observations that the radicalization process occurs incrementally.
The radicalization trajectory concept suggests that a linear pathway exists from an individual entertaining extremist ideas to ultimately taking extremist action marked by violence in the name of ideology.
The research findings validated that premise.
The researchers used 24 different behavioral indicators to search databases for evidence of growing extremism. Some examples of indicators are desire for action, issuance of threats, ideological rebellion, and steps toward violence. (See Figure 1 for an example of a set of cues, or behaviors, that the researchers associate with one behavioral indicator associated with planning a trip abroad.)
Source: Dynamic, Graph-Based Risk Assessments for the Detection of Violent Extremist Radicalization Trajectories Using Large Scale Social and Behavioral Data, by A. Jayasumana and J. Klausen, Table 5, p. 23.
Because violent extremism remains a relatively rare phenomenon, data on known individuals who committed terrorist events was mined to identify cues representing behavioral extremist trajectories. To that end, researchers collected three types of data:
The sources of collected data were public documents ranging from news articles to court documents, including indictments and affidavits supporting complaints.
Of the 1,241 individuals studied, the researchers reported that 421 engaged in domestic terrorist violence, 390 became foreign fighters, and 268 became both foreign fighters and individuals engaged in domestic terrorism. A minority (162) were convicted of nonviolent terrorism-related offenses.
Researchers analyzed time-stamped behavioral data such as travel abroad, a declaration of allegiance, information seeking, or seeking a new religious authority using graph techniques to assess the order of subjects behavioral changes and most common pathways leading to terrorism-related action. See the sidebar What do we mean by graph? Defining it in context.
The researchers made several notable findings beyond those presented in Table 1.
Although researchers found that terrorist crimes are often the work of older (at least 25 years old, on average) individuals, the agecrime relationship varied across types of terrorist offenses. They found that, on average, people who committed nonviolent extremist acts were 10 years older than those who became foreign fighters. Although younger men (median age 23) are more likely to take part in insurgencies abroad, slightly older men (median ages 25-26) who have adopted jihadist ideologies are more likely to engage in violent domestic terrorist attacks. Individuals who did something violent at home were, on average, four years older than foreign fighters.
Researchers also found that men and a few women at any age may engage in nonviolent criminal support for terrorism. Also, men are six times more likely than women to commit violent offenses, both in the United States and abroad.
According to this study, individuals who have adopted jihadist ideologies and who are immigrants are more likely than those who are homegrown to engage in domestic extremist violence.
The dataset, comprising more than 1,200 individuals who had adopted jihadist ideologies, was used to track radicalization trajectories. It was limited by the availability of sufficiently detailed text sources, which introduced an element of bias. Much of the public data on terrorism come from prosecutions, but not all terrorism-related offenses are prosecuted in state or federal U.S. courts. Some of the subjects died while fighting for foreign terror organizations, which limited the available information on them.
Although data from public documents may be freely shared, the researchers noted that research based on public sources can be extremely time consuming.
Often public education efforts on anti-terrorism take place at schools where children learn about recruitment tactics by extremist groups and warning signs of growing extremism. However, the study found that more than half of those who commit extremist violent acts in the United States are older than 23 and typically not in school. This suggests that anti-terrorism education efforts need to expand beyond school settings.
By using machine learning to identify persons on a trajectory toward extremist violence, the research supports a further move away from relying on user profiles of violent extremists and toward the use of behavioral indicators.
The research described in this article was funded by NIJ award 2017-ZA-CX-0002, awarded to Colorado State University. This article is based on the grantee report Dynamic, Graph-Based Risk Assessments for the Detection of Violent Extremist Radicalization Trajectories Using Large Scale Social and Behavioral Data, by A. Jayasumana and J. Klausen.
A graph, in the context of this research, is a mathematical representation of a collection of connections (called edges) between things (called nodes). Examples would be a social network or a crime network, or points on a map with paths connecting the points. The concept is analogous to cities, and roads or flights paths connecting them, on a map. The researchers in this violent extremism study isolated clusters of traits representing a more likely pathway to violent extremism. The concept is similar to a map app choosing roads that are least congested (allowing for most traffic) between two points. Graphs in this sense can be quite visual and make good conventional graphics.
Return to text
Link:
Research Rooted in Machine Learning Challenges Conventional ... - National Institute of Justice
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]
- A global survey from SAS shows that artificial intelligence and machine learning are producing major benefits in combating money laundering and other... - March 1st, 2025 [March 1st, 2025]
- Putting the AI in air cargo: How machine learning is reshaping demand forecasting - Air Cargo Week - March 1st, 2025 [March 1st, 2025]
- Meta speeds up its hiring process for machine-learning engineers as it cuts thousands of 'low performers' - Business Insider - February 11th, 2025 [February 11th, 2025]
- AI vs. Machine Learning: The Key Differences and Why They Matter - Lifewire - February 11th, 2025 [February 11th, 2025]
- Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression - Nature.com - February 11th, 2025 [February 11th, 2025]
- Climate change and machine learning the good, bad, and unknown - MIT Sloan News - February 11th, 2025 [February 11th, 2025]
- Theory, Analysis, and Best Practices for Sigmoid Self-Attention - Apple Machine Learning Research - February 11th, 2025 [February 11th, 2025]
- Yielding insights: Machine learning driven imputations to fill in agricultural data gaps in surveys - World Bank - February 11th, 2025 [February 11th, 2025]
- SKUtrak Promote tool taps machine learning powered analysis to shake up way brands run promotions - Retail Technology Innovation Hub - February 11th, 2025 [February 11th, 2025]
- Machine learning approaches for resilient modulus modeling of cement-stabilized magnetite and hematite iron ore tailings - Nature.com - February 11th, 2025 [February 11th, 2025]
- The Alignment Problem: Machine Learning and Human Values - Harvard Gazette - February 11th, 2025 [February 11th, 2025]
- Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data - Nature.com - February 11th, 2025 [February 11th, 2025]
- Analyzing the influence of manufactured sand and fly ash on concrete strength through experimental and machine learning methods - Nature.com - February 11th, 2025 [February 11th, 2025]
- Machine learning prediction of glaucoma by heavy metal exposure: results from the National Health and Nutrition Examination Survey 2005 to 2008 -... - February 11th, 2025 [February 11th, 2025]
- Correlation of rivaroxaban solubility in mixed solvents for optimization of solubility using machine learning analysis and validation - Nature.com - February 11th, 2025 [February 11th, 2025]
- Characterisation of cardiovascular disease (CVD) incidence and machine learning risk prediction in middle-aged and elderly populations: data from the... - February 11th, 2025 [February 11th, 2025]
- Unlock the Secrets of AI: How Mohit Pandey Makes Machine Learning Fun! - Mi Valle - February 11th, 2025 [February 11th, 2025]