Students Use Machine Learning in Lesson Designed to Reveal … – NC State News
In a new study, North Carolina State University researchers had 28 high school students create their own machine-learning artificial intelligence (AI) models for analyzing data. The goals of the project were to help students explore the challenges, limitations and promise of AI, and to ensure a future workforce is prepared to make use of AI tools.
The study was conducted in conjunction with a high school journalism class in the Northeast. Since then, researchers have expanded the program to high school classrooms in multiple states, including North Carolina. NCState researchers are looking to partner with additional schools to collaborate in bringing the curriculum into classrooms.
We want students, from a very young age, to open up that black box so they arent afraid of AI, said the studys lead author Shiyan Jiang, assistant professor of learning design and technology at NCState. We want students to know the potential and challenges of AI, and so they think about how they, the next generation, can respond to the evolving role of AI and society. We want to prepare students for the future workforce.
For the study, researchers developed a computer program called StoryQ that allows students to build their own machine-learning models. Then, researchers hosted a teacher workshop about the machine learning curriculum and technology in one-and-a-half hour sessions each week for a month. For teachers who signed up to participate further, researchers did another recap of the curriculum for participating teachers, and worked out logistics.
We created the StoryQ technology to allow students in high school or undergraduate classrooms to build what we call text classification models, Jiang said. We wanted to lower the barriers so students can really know whats going on in machine-learning, instead of struggling with the coding. So we created StoryQ, a tool that allows students to understand the nuances in building machine-learning and text classification models.
A teacher who decided to participate led a journalism class through a 15-day lesson where they used StoryQ to evaluate a series of Yelp reviews about ice cream stores. Students developed models to predict if reviews were positive or negative based on the language.
The teacher saw the relevance of the program to journalism, Jiang said. This was a very diverse class with many students who are under-represented in STEM and in computing. Overall, we found students enjoyed the lessons a lot, and had great discussions about the use and mechanism of machine-learning.
Researchers saw that students made hypotheses about specific words in the Yelp reviews, which they thought would predict if a review would be positive, or negative. For example, they expected reviews containing the word like to be positive. Then, the teacher guided the students to analyze whether their models correctly classified reviews. For example, a student who used the word like to predict reviews found that more than half of reviews containing the word were actually negative. Then, researchers said students used trial and error to try to improve the accuracy of their models.
Students learned how these models make decisions, and the role that humans can play in creating these technologies, and the kind of perspectives that can be brought in when they create AI technology, Jiang said.
From their discussions, researchers found that students had mixed reactions to AI technologies. Students were deeply concerned, for example, about the potential to use AI to automate processes for selecting students or candidates for opportunities like scholarships or programs.
For future classes, researchers created a shorter, five-hour program. Theyve launched the program in two high schools in North Carolina, as well as schools in Georgia, Maryland and Massachusetts. In the next phase of their research, they are looking to study how teachers across disciplines collaborate to launch an AI-focused program and create a community of AI learning.
We want to expand the implementation in North Carolina, Jiang said. If there are any schools interested, we are always ready to bring this program to a school. Since we know teachers are super busy, were offering a shorter professional development course, and we also provide a stipend for teachers. We will go into the classroom to teach if needed, or demonstrate how we would teach the curriculum so teachers can replicate, adapt, and revise it. We will support teachers in all the ways we can.
The study, High school students data modeling practices and processes: From modeling unstructured data to evaluating automated decisions, was published online March 13 in the journal Learning, Media and Technology. Co-authors included Hengtao Tang, Cansu Tatar, Carolyn P. Ros and Jie Chao. The work was supported by the National Science Foundation under grant number 1949110.
-oleniacz-
Note to Editors: The study abstract follows.
High school students data modeling practices and processes: From modeling unstructured data to evaluating automated decisions
Authors: Shiyan Jiang, Hengtao Tang, Cansu Tatar, Carolyn P. Ros and Jie Chao.
Published: March 13, 2023, Learning, Media and Technology
DOI: 10.1080/17439884.2023.2189735
Abstract: Its critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through developing machine learning models, few provided in-depth insights into the nuanced learning processes. In this study, we examined high school students data modeling practices and processes. Twenty-eight students developed machine learning models with text data for classifying negative and positive reviews of ice cream stores. We identified nine data modeling practices that describe students processes of model exploration, development, and testing and two themes about evaluating automated decisions from data technologies. The results provide implications for designing accessible data modeling experiences for students to understand data justice as well as the role and responsibility of data modelers in creating AI technologies.
Read more here:
Students Use Machine Learning in Lesson Designed to Reveal ... - NC State News
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]
- Machine learning analysis reveals tumor heterogeneity and stromal-immune niches in breast cancer - Nature - September 6th, 2025 [September 6th, 2025]
- Identification of Postoperative Weight Loss Trajectories and Development of a Machine Learning-Based Tool for Predicting Malnutrition in Gastric... - September 6th, 2025 [September 6th, 2025]
- The Relationship Between Number of Pregnancies and Serum 25-Hydroxyvitamin D Levels in Women with a Prior Pregnancy: A Cross - Sectional Analysis,... - September 6th, 2025 [September 6th, 2025]
- Tohoku University Researchers Use Machine Learning to Identify Factors Improving Nickel-Based Catalysts for CO Methanation - geneonline.com - September 6th, 2025 [September 6th, 2025]
- Combining machine learning predictions for Galaxy Payroll Group Limited - Quarterly Growth Report & AI Forecast Swing Trade Picks - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast CLSKW recovery - 2025 Breakouts & Breakdowns & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Granite Real Estate Investment Trust recovery - July 2025 Spike Watch & Growth Focused Stock Reports - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VERU recovery - July 2025 Intraday Action & AI Forecasted Entry/Exit Points - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast VCI Global Limited recovery - Market Rally & Expert-Curated Trade Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for AutoNation Inc. - Weekly Trend Summary & Weekly Breakout Watchlists - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for PLXS - Options Play & Fast Gain Stock Trading Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast Valens Semiconductor Ltd. recovery - July 2025 Action & Free Growth Oriented Trading Recommendations - Newser - September 5th, 2025 [September 5th, 2025]
- Improve cost visibility of Machine Learning workloads on Amazon EKS with AWS Split Cost Allocation Data - Amazon Web Services - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast LFT.PRA recovery - Weekly Trade Recap & Daily Profit Maximizing Trade Tips - Newser - September 5th, 2025 [September 5th, 2025]
- Can machine learning forecast TEAM recovery - 2025 Pullback Review & Free Weekly Chart Analysis and Trade Guides - Newser - September 5th, 2025 [September 5th, 2025]
- Combining machine learning predictions for MSBIP - Weekly Profit Analysis & AI Powered Market Entry Strategies - Newser - September 5th, 2025 [September 5th, 2025]
- Revolutionizing Antibody Discovery with Machine Learning - BIOENGINEER.ORG - September 5th, 2025 [September 5th, 2025]
- The good and bad of machine learning | Letters - The Guardian - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - AOL.com - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Dogwood Therapeutics Inc. - July 2025 Breakouts & Weekly Setup with High ROI Potential - Newser - September 3rd, 2025 [September 3rd, 2025]
- Phenotyping valvular heart diseases using the lens of unsupervised machine learning: a scoping review - Nature - September 3rd, 2025 [September 3rd, 2025]
- Students use machine learning to track and protect whale populations - Technology Org - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Triller Group Inc. Equity Warrant - Gap Up & Weekly High Conviction Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for DallasNews Corporation - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for System1 Inc. - Weekly Gains Summary & Risk Adjusted Swing Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- Unlocking the impossible without compromising on creative control: iZotope Ozone 12 adds new machine learning modules and a more musician-friendly AI... - September 3rd, 2025 [September 3rd, 2025]
- What machine learning models say about SLND.WS - Quarterly Trade Report & Technical Entry and Exit Tips - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Chemed Corporation - Weekly Stock Recap & Growth Focused Entry Reports - Newser - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for TAP.A - Earnings Growth Report & Entry Point Confirmation Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Bridging known and unknown dynamics by transformer-based machine-learning inference from sparse observations - Nature - September 3rd, 2025 [September 3rd, 2025]
- Combining machine learning predictions for Inseego Corp. - July 2025 Retail & Technical Confirmation Trade Alerts - Newser - September 3rd, 2025 [September 3rd, 2025]
- Can machine learning forecast Aditxt Inc. recovery - July 2025 Update & Expert Curated Trade Ideas - Newser - September 3rd, 2025 [September 3rd, 2025]
- I'm a machine learning engineer at Amazon who anticipated the ML boom. Here's my advice for staying ahead. - Business Insider - September 1st, 2025 [September 1st, 2025]
- Machine learning climbs the Jacobs Ladder of optoelectronic properties - Nature - September 1st, 2025 [September 1st, 2025]
- Predicting factors associated with anxiety by patients undergoing treatment for infectious diseases using a random-forest machine learning approach -... - September 1st, 2025 [September 1st, 2025]
- Hideo Kojima used "an AI machine learning rig" to painstakingly download his celebrity friends to Death Stranding 2, but he wasn't happy... - September 1st, 2025 [September 1st, 2025]
- Fibro predict a machine learning risk score for advanced liver fibrosis in the general population using Israeli electronic health records - Nature - September 1st, 2025 [September 1st, 2025]
- Machine learning for preventing stillbirths: is it possible to transform data into life-saving insights? - BMC Pregnancy and Childbirth - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Kura Sushi USA Inc. recovery - 2025 Fundamental Recap & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for China Liberal Education Holdings Limited - Weekly Profit Recap & Weekly Breakout Watchlists - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tyson Foods Inc. recovery - 2025 Trade Ideas & Smart Swing Trading Techniques - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast GLBZ recovery - July 2025 Movers & AI Based Buy and Sell Signals - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Sypris Solutions Inc. - Market Performance Recap & Real-Time Volume Trigger Notifications - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about Astria Therapeutics Inc. - July 2025 News Drivers & Real-Time Buy Signal Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast CRTO recovery - July 2025 Analyst Calls & Growth Focused Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - Exit Point & Pattern Based Trade Signal System - Newser - September 1st, 2025 [September 1st, 2025]
- What machine learning models say about OFIX - Bond Market & Long-Term Safe Investment Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Beneficient recovery - Weekly Trade Recap & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast BTBDW recovery - 2025 Geopolitical Influence & Weekly High Momentum Picks - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Tri Pointe Homes Inc. recovery - July 2025 WrapUp & Free Long-Term Investment Growth Plans - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast TeraWulf Inc. recovery - Market Movement Recap & Community Supported Trade Ideas - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for Alset Inc. - 2025 Technical Patterns & Precise Buy Zone Identification - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Exelon Corporation recovery - 2025 Bull vs Bear & Smart Allocation Stock Reports - Newser - September 1st, 2025 [September 1st, 2025]
- Can machine learning forecast Token Cat Limited Depositary Receipt recovery - 2025 Price Action Summary & Breakout Confirmation Alerts - Newser - September 1st, 2025 [September 1st, 2025]
- Combining machine learning predictions for BT Brands Inc. - Market Performance Recap & Verified Technical Trade Signals - Newser - September 1st, 2025 [September 1st, 2025]
- 7 Beginner Machine Learning Projects To Complete This Weekend - KDnuggets - August 29th, 2025 [August 29th, 2025]
- Machine learning approaches for predicting the construction time of drill-and-blast tunnels - Nature - August 29th, 2025 [August 29th, 2025]
- Combining machine learning predictions for KKR.PRD - July 2025 Closing Moves & Technical Pattern Recognition Alerts - Newser - August 29th, 2025 [August 29th, 2025]