SVG Tech Insight: Increasing Value of Sports Content Machine Learning for Up-Conversion HD to UHD – Sports Video Group
This fall SVG will be presenting a series of White Papers covering the latest advancements and trends in sports-production technology. The full series of SVGs Tech Insight White Papers can be found in the SVG Fall SportsTech Journal HERE.
Following the height of the 2020 global pandemic, live sports are starting to re-emerge worldwide albeit predominantly behind closed doors. For the majority of sports fans, video is the only way they can watch and engage with their favorite teams or players. This means the quality of the viewing experience itself has become even more critical.
With UHD being adopted by both households and broadcasters around the world, there is a marked expectation around visual quality. To realize these expectations in the immediate term, it will be necessary for some years to up-convert from HD to UHD when creating 4K UHD sports channels and content.
This is not so different from the early days of HD, where SD sporting related content had to be up-converted to HD. In the intervening years, however, machine learning as a technology has progressed sufficiently to be a serious contender for performing better up-conversions than with more conventional techniques, specifically designed to work for TV content.
Ideally, we want to process HD content into UHD with a simple black box arrangement.
The problem with conventional up-conversion, though, is that it does not offer an improved resolution, so does not fully meet the expectations of the viewer at home watching on a UHD TV. The question, therefore, becomes: can we do better for the sports fan? If so, how?
UHD is a progressive scan format, with the native TV formats being 38402160, known as 2160p59.64 (usually abbreviated to 2160p60) or 2160p50. The corresponding HD formats, with the frame/field rates set by region, are either progressive 1280720 (720p60 or 720p50) or interlaced 19201080 (1080i30 or 1080i25).
Conversion from HD to UHD for progressive images at the same rate is fairly simple. It can be achieved using spatial processing only. Traditionally, this might typically use a bi-cubic interpolation filter, (a 2-dimensional interpolation commonly used for photographic image scaling.) This uses a grid of 44 source pixels and interpolates intermediate locations in the center of the grid. The conversion from 1280720 to 38402160 requires a 3x scaling factor in each dimension and is almost the ideal case for an upsampling filter.
These types of filters can only interpolate, resulting in an image that is a better result than nearest-neighbor or bi-linear interpolation, but does not have the appearance of being a higher resolution.
Machine Learning (ML) is a technique whereby a neural network learns patterns from a set of training data. Images are large, and it becomes unfeasible to create neural networks that process this data as a complete set. So, a different structure is used for image processing, known as Convolutional Neural Networks (CNNs). CNNs are structured to extract features from the images by successively processing subsets from the source image and then processes the features rather than the raw pixels.
Up-conversion process with neural network processing
The inbuilt non-linearity, in combination with feature-based processing, mean CNNs can invent data not in the original image. In the case of up-conversion, we are interested in the ability to create plausible new content that was not present in the original image, but that doesnt modify the nature of the image too much. The CNN used to create the UHD data from the HD source is known as the Generator CNN.
When input source data needs to be propagated through the whole chain, possibly with scaling involved, then a specific variant of a CNN known as a Residual Network (ResNet) is used. A ResNet has a number of stages, each of which includes a contribution from a bypass path that carries the input data. For this study, a ResNet with scaling stages towards the end of the chain was used as the Generator CNN.
For the Generator CNN to do its job, it must be trained with a set of known data patches of reference images and a comparison is made between the output and the original. For training, the originals are a set of high-resolution UHD images, down-sampled to produce HD source images, then up-converted and finally compared to the originals.
The difference between the original and synthesized UHD images is calculated by the compare function with the error signal fed back to the Generator CNN. Progressively, the Generator CNN learns to create an image with features more similar to original UHD images.
The training process is dependent on the data set used for training, and the neural network tries to fit the characteristics seen during training onto the current image. This is intriguingly illustrated in Googles AI Blog [1], where a neural network presented with a random noise pattern introduces shapes like the ones used during training. It is important that a diverse, representative content set is used for training. Patches from about 800 different images were used for training during the process of MediaKinds research.
The compare function affects the way the Generator CNN learns to process the HD source data. It is easy to calculate a sum of absolute differences between original and synthesized. This causes an issue due to training set imbalance; in this case, the imbalance is that real pictures have large proportions with relatively little fine detail, so the data set is biased towards regenerating a result like that which is very similar to the use of a bicubic interpolation filter.
This doesnt really achieve the objective of creating plausible fine detail.
Generative Adversarial Neural Networks (GANs) are a relatively new concept [2], where a second neural network, known as the Discriminator CNN, is used and is itself trained during the training process of the Generator CNN. The Discriminator CNN learns to detect the difference between features that are characteristic of original UHD images and synthesized UHD images. During training, the Discriminator CNN sees either an original UHD image or a synthesized UHD image, with the detection correctness fed back to the discriminator and, if the image was a synthesized one, also fed back to the Generator CNN.
Each CNN is attempting to beat the other: the Generator by creating images that have characteristics more like originals, while the Discriminator becomes better at detecting synthesized images.
The result is the synthesis of feature details that are characteristic of original UHD images.
With a GAN approach, there is no real constraint to the ability of the Generator CNN to create new detail everywhere. This means the Generator CNN can create images that diverge from the original image in more general ways. A combination of both compare functions can offer a better balance, retaining the detail regeneration, but also limiting divergence. This produces results that are subjectively better than conventional up-conversion.
Conversion from 1080i60 to 2160p60 is necessarily more complex than from 720p60. Starting from 1080i, there are three basic approaches to up-conversion:
Training data is required here, which must come from 2160p video sequences. This enables a set of fields to be created, which are then downsampled, with each field coming from one frame in the original 2160p sequence, so the fields are not temporally co-located.
Surprisingly, results from field-based up-conversion tended to be better than using de-interlaced frame conversion, despite using sophisticated motion-compensated de-interlacing: the frame-based conversion being dominated by the artifacts from the de-interlacing process. However, it is clear that potentially useful data from the opposite fields did not contribute to the result, and the field-based approach missed data that could produce a better result.
A solution to this is to use multiple fields data as the source data directly into a modified Generator CNN, letting the GAN learn how best to perform the deinterlacing function. This approach was adopted and re-trained with a new set of video-based data, where adjacent fields were also provided.
This led to both high visual spatial resolution and good temporal stability. These are, of course, best viewed as a video sequence, however an example of one frame from a test sequence shows the comparison:
Comparison of a sample frame from different up-conversion techniques against original UHD
Up-conversion using a hybrid GAN with multiple fields was effective across a range of content, but is especially relevant for the visual sports experience to the consumer. This offers a realistic means by which content that has more of the appearance of UHD can be created from both progressive and interlaced HD source, which in turn can enable an improved experience for the fan at home when watching a sports UHD channel.
1 A. Mordvintsev, C. Olah and M. Tyka, Inceptionism: Going Deeper into Neural Networks, 2015. [Online]. Available: https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
2 I. e. a. Goodfellow, Generative Adversarial Nets, Neural Information Processing Systems Proceedings, vol. 27, 2014.
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]
- The future of PC gaming will be AI-driven - AMD confirms machine learning FSR 4 for 2025, launching in Call of Duty: Black Ops 6 - TechRadar - November 4th, 2024 [November 4th, 2024]
- Machine-Learning Platform Gives DoD Ability To ID Threat Network Activity - Defense Innovation Unit - November 4th, 2024 [November 4th, 2024]
- Machine Learning Offers a Water Bill Discount to Wealthy Portlander - Willamette Week - November 4th, 2024 [November 4th, 2024]