The 17 Best AI and Machine Learning TED Talks for Practitioners – Solutions Review
The editors at Solutions Review curated this list of the best AI and machine learning TED talks for practitioners in the field.
TED Talks are influential videos from expert speakers in a variety of verticals. TED began in 1984 as a conference where Technology, Entertainment and Design converged, and today covers almost all topics from business to technology to global issues in more than 110 languages. TED is building a clearinghouse of free knowledge from the worlds top thinkers, and their library of videos is expansive and rapidly growing.
Solutions Review has curated this list of AI and machine learning TED talks to watch if you are a practitioner in the field. Talks were selected based on relevance, ability to add business value, and individual speaker expertise. Weve also curated TED talk lists for topics like data visualization and big data.
Erik Brynjolfsson is the director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research. He asks how IT affects organizations, markets and the economy. His books include Wired for Innovation and Race Against the Machine. Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles.
In this talk, Brynjolfsson argues that machine learning and intelligence are not the end of growth its simply the growing pains of a radically reorganized economy. A riveting case for why big innovations are ahead of us if we think of computers as our teammates. Be sure to watch the opposing viewpoint from Robert Gordon.
Jeremy Howard is the CEO ofEnlitic, an advanced machine learning company in San Francisco. Previously, he was the president and chief scientist atKaggle, a community and competition platform of over 200,000 data scientists. Howard is a faculty member atSingularity University, where he teaches data science. He is also a Young Global Leader with the World Economic Forum, and spoke at the World Economic Forum Annual Meeting 2014 on Jobs for the Machines.
Technologist Jeremy Howard shares some surprising new developments in the fast-moving field of deep learning, a technique that can give computers the ability to learn Chinese, or to recognize objects in photos, or to help think through a medical diagnosis.
Nick Bostrom is a professor at the Oxford University, where he heads theFuture of Humanity Institute, a research group of mathematicians, philosophers and scientists tasked with investigating the big picture for the human condition and its future. Bostrom was honored as one ofForeign Policys 2015Global Thinkers. His bookSuperintelligenceadvances the ominous idea that the first ultraintelligent machine is the last invention that man need ever make.
In this talk, Nick Bostrom calls machine intelligence the last invention that humanity will ever need to make. Bostrom asks us to think hard about the world were building right now, driven by thinking machines. Will our smart machines help to preserve humanity and our values or will they have values of their own?
Lis work with neural networks and computer vision (with Stanfords Vision Lab) marks a significant step forward for AI research, and could lead to applications ranging from more intuitive image searches to robots able to make autonomous decisions in unfamiliar situations. Fei-Fei was honored as one ofForeign Policys 2015Global Thinkers.
This talk digs into how computers are getting smart enough to identify simple elements. Computer vision expert Fei-Fei Li describes the state of the art including the database of 15 million photos her team built to teach a computer to understand pictures and the key insights yet to come.
Anthony Goldbloom is the co-founder and CEO ofKaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists. In 2011 and 2012,Forbesnamed Anthony one of the 30 under 30 in technology; in 2013 theMIT Tech Reviewnamed him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award.
This talk by Anthony Goldbloom describes some of the current use cases for machine learning, far beyond simple tasks like assessing credit risk and sorting mail.
Tufekci is a contributing opinion writer at theNew York Times, an associate professor at the School of Information and Library Science at University of North Carolina, Chapel Hill, and a faculty associate at Harvards Berkman Klein Center for Internet and Society. Her book,Twitter and Tear Gas was published in 2017 by Yale University Press.
Machine intelligence is here, and were already using it to make subjective decisions. But the complex way AI grows and improves makes it hard to understand and even harder to control. In this cautionary talk, techno-sociologist Zeynep Tufekci explains how intelligent machines can fail in ways that dont fit human error patterns and in ways we wont expect or be prepared for.
In his bookThe Business Romantic, Tim Leberecht invites us to rediscover romance, beauty and serendipity by designing products, experiences, and organizations that make us fall back in love with our work and our life. The book inspired the creation of the Business Romantic Society, a global collective of artists, developers, designers and researchers who share the mission of bringing beauty to business.
In this talk, Tim Leberecht makes the case for a new radical humanism in a time of artificial intelligence and machine learning. For the self-described business romantic, this means designing organizations and workplaces that celebrate authenticity instead of efficiency and questions instead of answers. Leberecht proposes four principles for building beautiful organizations.
Grady Booch is Chief Scientist for Software Engineering as well as Chief Scientist for Watson/M at IBM Research, where he leads IBMs research and development for embodied cognition. Having originated the term and the practice of object-oriented design, he is best known for his work in advancing the fields of software engineering and software architecture.
Grady Booch allays our worst (sci-fi induced) fears about superintelligent computers by explaining how well teach, not program, them to share our human values. Rather than worry about an unlikely existential threat, he urges us to consider how artificial intelligence will enhance human life.
Tom Gruberis a product designer, entrepreneur, and AI thought leader who uses technology to augment human intelligence. He was co-founder, CTO, and head of design for the team that created theSiri virtual assistant. At Apple for over 8 years, Tom led the Advanced Development Group that designed and prototyped new capabilities for products that bring intelligence to the interface.
This talk introduces the idea of Humanistic AI. He shares his vision for a future where AI helps us achieve superhuman performance in perception, creativity and cognitive function from turbocharging our design skills to helping us remember everything weve ever read. The idea of an AI-powered personal memory also extends to relationships, with the machine helping us reflect on our interactions with people over time.
Stuart Russell is a professor (and formerly chair) of Electrical Engineering and Computer Sciences at University of California at Berkeley. His bookArtificial Intelligence: A Modern Approach (with Peter Norvig) is the standard text in AI; it has been translated into 13 languages and is used in more than 1,300 universities in 118 countries. He also works for the United Nations, developing a new global seismic monitoring system for the nuclear-test-ban treaty.
His talk centers around the question of whether we can harness the power of superintelligent AI while also preventing the catastrophe of robotic takeover. As we move closer toward creating all-knowing machines, AI pioneer Stuart Russell is working on something a bit different: robots with uncertainty. Hear his vision for human-compatible AI that can solve problems using common sense, altruism and other human values.
Dr. Pratik Shahs research creates novel intersections between engineering, medical imaging, machine learning, and medicine to improve health and diagnose and cure diseases. Research topics include: medical imaging technologies using unorthodox artificial intelligence for early disease diagnoses; novel ethical, secure and explainable artificial intelligence based digital medicines and treatments; and point-of-care medical technologies for real world data and evidence generation to improve public health.
TED Fellow Pratik Shah is working on a clever system to do just that. Using an unorthodox AI approach, Shah has developed a technology that requires as few as 50 images to develop a working algorithm and can even use photos taken on doctors cell phones to provide a diagnosis. Learn more about how this new way to analyze medical information could lead to earlier detection of life-threatening illnesses and bring AI-assisted diagnosis to more health care settings worldwide.
Margaret Mitchells research involves vision-language and grounded language generation, focusing on how to evolve artificial intelligence towards positive goals. Her work combines computer vision, natural language processing, social media as well as many statistical methods and insights from cognitive science. Before Google, Mitchell was a founding member of Microsoft Researchs Cognition group, focused on advancing artificial intelligence, and a researcher in Microsoft Researchs Natural Language Processing group.
Margaret Mitchell helps develop computers that can communicate about what they see and understand. She tells a cautionary tale about the gaps, blind spots and biases we subconsciously encode into AI and asks us to consider what the technology we create today will mean for tomorrow.
Kriti Sharma is the Founder of AI for Good, an organization focused on building scalable technology solutions for social good. Sharma was recently named in theForbes 30 Under 30 list for advancements in AI. She was appointed a United Nations Young Leader in 2018 and is an advisor to both the United Nations Technology Innovation Labs and to the UK Governments Centre for Data Ethics and Innovation.
AI algorithms make important decisions about you all the time like how much you should pay for car insurance or whether or not you get that job interview. But what happens when these machines are built with human bias coded into their systems? Technologist Kriti Sharma explores how the lack of diversity in tech is creeping into our AI, offering three ways we can start making more ethical algorithms.
Matt Beane does field research on work involving robots to help us understand the implications of intelligent machines for the broader world of work. Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MITs Institute for the Digital Economy. He received his PhD from the MIT Sloan School of Management.
The path to skill around the globe has been the same for thousands of years: train under an expert and take on small, easy tasks before progressing to riskier, harder ones. But right now, were handling AI in a way that blocks that path and sacrificing learning in our quest for productivity, says organizational ethnographer Matt Beane. Beane shares a vision that flips the current story into one of distributed, machine-enhanced mentorship that takes full advantage of AIs amazing capabilities while enhancing our skills at the same time.
Leila Pirhaji is the founder ofReviveMed, an AI platform that can quickly and inexpensively characterize large numbers of metabolites from the blood, urine and tissues of patients. This allows for the detection of molecular mechanisms that lead to disease and the discovery of drugs that target these disease mechanisms.
Biotech entrepreneur and TED Fellow Leila Pirhaji shares her plan to build an AI-based network to characterize metabolite patterns, better understand how disease develops and discover more effective treatments.
Janelle Shane is the owner of AIweirdness.com. Her book, You Look Like a Thing and I Love Youuses cartoons and humorous pop-culture experiments to look inside the minds of the algorithms that run our world, making artificial intelligence and machine learning both accessible and entertaining.
The danger of artificial intelligence isnt that its going to rebel against us, but that its going to do exactly what we ask it to do, says AI researcher Janelle Shane. Sharing the weird, sometimes alarming antics of AI algorithms as they try to solve human problems like creating new ice cream flavors or recognizing cars on the road Shane shows why AI doesnt yet measure up to real brains.
Sylvain Duranton is the global leader of BCG GAMMA, a unit dedicated to applying data science and advanced analytics to business. He manages a team of more than 800 data scientists and has implemented more than 50 custom AI and analytics solutions for companies across the globe.
In this talk, business technologist Sylvain Duranton advocates for a Human plus AI approach using AI systems alongside humans, not instead of them and shares the specific formula companies can adopt to successfully employ AI while keeping humans in the loop.
For more AI and machine learning TED talks, browse TEDs complete topic collection.
Timothy is Solutions Review's Senior Editor. He is a recognized thought leader and influencer in enterprise BI and data analytics. Timothy has been named a top global business journalist by Richtopia. Scoop? First initial, last name at solutionsreview dot com.
Continued here:
The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]
- The future of PC gaming will be AI-driven - AMD confirms machine learning FSR 4 for 2025, launching in Call of Duty: Black Ops 6 - TechRadar - November 4th, 2024 [November 4th, 2024]
- Machine-Learning Platform Gives DoD Ability To ID Threat Network Activity - Defense Innovation Unit - November 4th, 2024 [November 4th, 2024]
- Machine Learning Offers a Water Bill Discount to Wealthy Portlander - Willamette Week - November 4th, 2024 [November 4th, 2024]