The convergence of deep neural networks and immunotherapy – TechCrunch
Luis Voloch is the CTO and co-founder of Immunai. He was previously Israel Tech Challenges head of data science, worked on varied machine learning efforts at Palantir and led the machine learning initiatives for ML modeling of DNA data at MyHeritage.
What do deep neural networks and cancer immunotherapy have in common?
While both are among the most transformational areas of modern science, 30 years ago, these fields were all but ridiculed by the scientific community. As a result, progress in each happened at the sidelines of academia for decades.
Between the 1970s and 1990s, some of the most prominent computer scientists, including Marvin Minsky, in his book Perceptrons, argued that neural networks (the backbone of most modern AI) would never work for most applications. He exposed flaws in the early conceptions of neural networks and argued that the whole approach was ineffective.
Meanwhile, during the 1980s through the 2000s, neural network pioneers and believers Geoffrey Hinton, Yoshua Bengio, and Yann LeCun continued their efforts and pursued their intuition that neural networks would succeed. These researchers found that most of the original ideas were correct but simply needed more data (think of ImageNET), computational power and further modeling tweaks to be effective.
Hinton, Bengio and LeCun were awarded the Turing Award in 2018 (the computer science equivalent of a Nobel prize) for their work. Today, their revelations have made neural networks the most vibrant area of computer science and have revolutionized fields such as computer vision and natural language processing.
Cancer immunology faced similar obstacles. Treatment with IL-2 cytokine, one of the first immunomodulatory drugs, failed to meet expectations. These outcomes slowed further research, and for decades, cancer immunology wasnt taken seriously by many cancer biologists. With the effort and intuition of some, however, it was discovered decades later that the concept of boosting the immune system to fight cancer had objective validity. It turned out that we just needed better drug targets and combinations, and eventually, researchers demonstrated that the immune system is the best tool in our fight against cancer.
James P. Allison and Tasuku Honjo, who pioneered the class of cancer immunotherapy drugs known as checkpoint inhibitors, were awarded the Nobel Prize in 2018.
Though widely accepted now, it took decades for the scientific establishment to accept these novel approaches as valid.
Machine learning and immunotherapy have more in common than historical similarities. The beauty of immunotherapy is that it leverages the versatility and flexibility of the immune system to fight different types of cancers. While the first immunotherapies showed results in a few cancers, they were later shown to work in many other cancer types. AI, similarly, utilizes flexible tools to solve a wide range of problems across applications via transfer and multitask learning. These processes are made possible through access to large-scale data.
Heres something to remember: The resurgence of neural networks started in 2012 after the AlexNet architecture demonstrated 84.7% accuracy in the ImageNET competition. This level of performance was revolutionary at the time, with the second-best model achieving 73.8% accuracy. The ImageNET dataset, started by Fei-Fei Li, is robust, well labeled and high quality. As a result, it has been integral to how far neural networks have brought computer vision today.
Interestingly, similar developments are happening now in biology. Life sciences companies and labs are building large-scale datasets with tens of millions of immune cells labeled consistently to ensure the validity of the underlying data. These datasets are the analogs of ImageNET in biology.
Were already seeing these large, high-quality datasets giving rise to experimentation at a rate and scale that was impossible before. For example, machine learning is being used to identify immune cell types in different parts of the body and their involvement in various diseases. After identifying patterns, algorithms can map or predict different immune trajectories, which can then be used to interpret, for example, why some cancer immunotherapies work on particular cancer types and some dont. The datasets act as the Google Maps of the immune system.
Mapping patterns of genes, proteins and cell interactions across diseases allows researchers to understand molecular pathways as the building blocks of disease. The presence or absence of a functional block helps interpret why some cancer immunotherapies work on particular cancer types but not others.
Mapping pathways of genes and proteins across diseases and phenotypes allows researchers to learn how they work together to activate specific pathways and fight multiple diseases. Genes can be part of numerous pathways, and they can cause distinct types of cells to behave differently.
Moreover, different cell types can share similar gene activities, and the same functional pathways can be found in various immune-related disorders. This makes a case for building machine learning models that perform effectively on specific tasks and transfer to other tasks.
Transfer learning works in deep learning models, for example, by taking simple patterns (in images, think of simple lines and curves) learned by early layers of a neural network and leveraging those layers for different problems. In biology, this allows us to transfer knowledge on how specific genes and pathways in one disease or cell type play a role in other contexts.
AI research that addresses the effects of genetic changes (perturbations) on immune cells and their impact on the cells and possible treatments is increasingly common in cancer immunology. This kind of research will enable us to understand these cells more quickly and lead to better drugs and treatments.
With large-scale data fueling further research in immunotherapy and AI, we are confident that more effective drugs to fight cancer will appear soon, thus giving hope to the over 18 million people who are diagnosed with cancer every year.
Read the rest here:
The convergence of deep neural networks and immunotherapy - TechCrunch
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]