The data science and AI market may be out for a recalibration – ZDNet
Shutterstock
Being a data scientist was supposed to be "the sexiest job of the 21st century". Whether the famous Harvard Business Review aphorism of 2012 holds water is somewhat subjective, depending on how you interpret "sexy". However, the data around data scientists, as well as related data engineering and data analyst roles, are starting to ring alarms.
The subjective part about HBR's aphorism is whether you actually enjoy finding and cleaning up data, building and debugging data pipelines and integration code, as well as building and improving machine learning models. That list of tasks, in that order, is what data scientists spend most of their time on.
Some people are genuinely attracted to data-centered careers by the job description; the growth in demand and salaries more attracts others. While the dark sides of the job description itself are not unknown, the growth and salaries part was not disputed much. That, however, may be changing: data scientist roles are still in demand but are not immune to market turmoil.
At the beginning of 2022, the first sign that something may be changing became apparent. As an IEEE Spectrum analysis of data released by online recruitment firmDiceshowed, in 2021, AI and machine learning salaries dropped, even though, on average, U.S. tech salaries climbed nearly 7%.
Overall, 2021 was a good year for tech professionals in the United States, with the average salary up 6.9% to $104,566. However, as the IEEE Spectrum notes, competition for machine learning, natural language processing, and AI experts softened, with average salaries dropping 2.1%, 7.8%, and 8.9%, respectively.
It's the first time this has occurred in recent years, as average U.S. salaries for software engineers with expertise in machine learning, for example, jumped 22% in 2019 over 2018, then went up another 3.1% in 2020. At the same time, demand for data scientist roles does not show any signs of subsiding -- on the contrary.
Developer recruitment platforms report seeing a sharp rise in the demand for data science-related IT skills. The latestIT Skills Reportby developer screening and interview platform DevSkiller recorded a 295% increase in the number of data science-related tasks recruiters were setting for candidates in the interview process during 2021.
CodinGame and CoderPad's2022 Tech Hiring Surveyalso identified data science as a profession for which demand greatly outstrips supply, along with DevOps and machine-learning specialists. As a result, ZDNet's Owen Hughes notes, employers will have to reassess both the salaries and benefits packages they offer employees if they hope to remain competitive.
The data science and AI market is sending mixed signals
Plus, 2021 saw what came to be known as the "Great Resignation" or "Great Reshuffle" -- a time when everyone is rethinking everything, including their careers. In theory, having a part of the workforce redefine their trajectory and goals and/or resign should increase demand and salaries -- analyses on why data scientists quit and what employers can do to retain themstarted making the rounds.
Then along came the layoffs, including layoffs of data scientist, data engineer and data analyst roles. As LinkedIn's analysis of the latest round of layoffs notes, the tech sector's tumultuous year has been denoted by daily announcements of layoffs, hiring freezes and rescinded job offers.
About 17,000 workers from more than 70 tech startups globally were laid off in May, a 350% jump from April. This is the most significant number of lost jobs in the sector since May 2020, at the height of the pandemic. In addition, tech giants such asNetflixandPayPalare also shedding jobs, whileUber,Lyft,SnapandMetahave slowed hiring.
According to data shared by the tech layoff tracking siteLayoffs.fyi, layoffs range from 7% to 33% of the workforce in the companies tracked. Drilling down at company-specific data shows that those include data-oriented roles, too.
Looking at data from FinTech Klarna and insurance startup PolicyGenius layoffs, for example, shows that data scientist, data engineer and data analyst roles are affected at both junior and senior levels. In both companies, those roles amount to about 4% of the layoffs.
What are we to make of those mixed signals then? Demand for data science-related tasks seems to be going on strong, but salaries are dropping, and those roles are not immune to layoffs either. Each of those signals comes with its own background and implications. Let's try to unpack them, and see what their confluence means for job seekers and employers.
As Dice chief marketing officer Michelle Marian told IEEE Spectrum, there are a variety of factors likely contributing to the decreases in machine learning and AI salaries, with one important consideration being that more technologists are learning and mastering these skill sets:
"The increases in the talent pool over time can result in employers needing to pay at least slightly less, given that the skill sets are easier to find. We have seen this occur with a range of certifications and other highly specialized technology skills", said Marian.
That seems like a reasonable conclusion. However, for data science and machine learning, there may be something else at play, too. Data scientists and machine learning experts are not only competing against each other but also increasingly against automation. As Hong Kong-based quantitative portfolio manager Peter Yuen notes, quants have seen this all before.
Prompted by news of top AI researchers landing salaries in the $1 million range, Yuen writes that this "should be more accurately interpreted as a continuation of a long trend of high-tech coolies coding themselves out of their jobs upon a backdrop of global oversupply of skilled labour".
If three generations of quants' experience in automating financial markets are anything to go by, Yuen writes, the automation of rank-and-file AI practitioners across many industries is perhaps only a decade or so away. After that, he adds, a small group of elite AI practitioners will have made it to managerial or ownership status while the remaining are stuck in average-paid jobs tasked with monitoring and maintaining their creations.
We may already be at the initial stages in this cycle, as evidenced by developments such as AutoML and libraries of off-the-shelf machine learning models. If history is anything to go by, then what Yuen describes will probably come to pass, too, inevitably leading to questions about how displaced workers can "move up the stack".
However, it's probably safe to assume that data science roles won't have to worry about that too much in the immediate future. After all, another oft-cited fact about data science projects is that ~80% of them still failfor a number of reasons. One of the most public cases of data science failure was Zillow.
Zillow's business came to rely heavily on the data science team to build accurate predictive models for its home buying service. As it turned out, the models were not so accurate. As a result, the company's stock went down over 30% in 5 days, the CEO put a lot of blame on the data science team, and 25% of the staff got laid off.
Whether or not the data science team was at fault at Zillow is up for debate. As for recent layoffs, they should probably be seen as part of a greater turn in the economy rather than a failure of data science teams per se. As Data Science Central Community Editor Kurt Cagle writes, there is talk of a looming AI winter, harkening back to the period in the 1970s when funding for AI ventures dried up altogether.
Cagle believes that while an AI Winter is unlikely, an AI Autumn with a cooling off of an over-the-top venture capital field in the space can be expected. The AI Winter of the 1970s was largely due to the fact that the technology was not up to the task, and there was not enough digitized data to go about.
The dot-com bubble era may have some lessons in store for today's data science roles
Today much greater compute power is available, and the amount of data is skyrocketing too. Cagle argues that the problem could be that we are approaching the limits of the currently employed neural network architectures. Cagle adds that a period in which brilliant minds can actually rest and innovate rather than simply apply established thinking would likely do the industry some good.
Like many others, Cagle is pointing out deficiencies in the "deep learning will be able to do everything" school of thought. This critique seems valid, and incorporating approaches that are overlooked today could drive progress in the field. However, let's not forget that the technology side of things is not all that matters here.
Perhaps recent history can offer some insights: what can the history of software development and the internet teach us? In some ways, the point where we are at now is reminiscent of the dot-com bubble era: increased availability of capital, excessive speculation, unrealistic expectations, and through-the-ceiling valuations. Today, we may be headed towards the bursting of the AI bubble.
That does not mean that data science roles will lose their appeal overnight or that what they do is without value. After all, software engineers are still in demand for all the progress and automation that software engineering has seen in the last few decades. But it probably means that a recalibration is due, and expectations should be managed accordingly.
See the rest here:
The data science and AI market may be out for a recalibration - ZDNet
- The Nvidia AI interview: Inside DLSS 4 and machine learning with Bryan Catanzaro - Eurogamer - January 22nd, 2025 [January 22nd, 2025]
- The wide use of machine learning VFX techniques on Here - befores & afters - January 22nd, 2025 [January 22nd, 2025]
- .NET Core: Pioneering the Future of AI and Machine Learning - TechBullion - January 22nd, 2025 [January 22nd, 2025]
- Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU... - January 22nd, 2025 [January 22nd, 2025]
- A comparative study on different machine learning approaches with periodic items for the forecasting of GPS satellites clock bias - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- Machine learning based prediction models for the prognosis of COVID-19 patients with DKA - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- A scoping review of robustness concepts for machine learning in healthcare - Nature.com - January 22nd, 2025 [January 22nd, 2025]
- How AI and machine learning led to mind blowing progress in understanding animal communication - WHYY - January 22nd, 2025 [January 22nd, 2025]
- 3 Predictions For Predictive AI In 2025 - The Machine Learning Times - January 22nd, 2025 [January 22nd, 2025]
- AI and Machine Learning - WEF report offers practical steps for inclusive AI adoption - SmartCitiesWorld - January 22nd, 2025 [January 22nd, 2025]
- Learnings from a Machine Learning Engineer Part 3: The Evaluation | by David Martin | Jan, 2025 - Towards Data Science - January 22nd, 2025 [January 22nd, 2025]
- Google AI Research Introduces Titans: A New Machine Learning Architecture with Attention and a Meta in-Context Memory that Learns How to Memorize at... - January 22nd, 2025 [January 22nd, 2025]
- Improving BrainMachine Interfaces with Machine Learning ... - eeNews Europe - January 22nd, 2025 [January 22nd, 2025]
- Powered by machine learning, a new blood test can enable early detection of multiple cancers - Medical Xpress - January 15th, 2025 [January 15th, 2025]
- Mapping the Edges of Mass Spectral Prediction: Evaluation of Machine Learning EIMS Prediction for Xeno Amino Acids - Astrobiology News - January 15th, 2025 [January 15th, 2025]
- Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus -... - January 15th, 2025 [January 15th, 2025]
- Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools - Nature.com - January 15th, 2025 [January 15th, 2025]
- "From 'Food Rules' to Food Reality: Machine Learning Unveils the Ultra-Processed Truth in Our Grocery Carts" - American Council on Science... - January 15th, 2025 [January 15th, 2025]
- AI and Machine Learning in Business Market is Predicted to Reach $190.5 Billion at a CAGR of 32% by 2032 - EIN News - January 15th, 2025 [January 15th, 2025]
- QT Imaging Holdings Introduces Machine Learning-Enabled Image Interpolation Algorithm to Substantially Reduce Scan Time - Business Wire - January 15th, 2025 [January 15th, 2025]
- Global Tiny Machine Learning (TinyML) Market to Reach USD 3.4 Billion by 2030 - Key Drivers and Opportunities | Valuates Reports - PR Newswire UK - January 15th, 2025 [January 15th, 2025]
- Machine learning in mental health getting better all the time - Nature.com - January 15th, 2025 [January 15th, 2025]
- Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering - Nature.com - January 15th, 2025 [January 15th, 2025]
- Machine learning and multi-omics in precision medicine for ME/CFS - Journal of Translational Medicine - January 15th, 2025 [January 15th, 2025]
- Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine... - January 15th, 2025 [January 15th, 2025]
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]