The growth stage of applied AI and MLOps – TechTalks
This article is part of our series that explores thebusiness of artificial intelligence
Applied artificial intelligence tops the list of 14 most influential technology trends in McKinsey & Companys Technology Trends Outlook 2022 report.
For now, applied AI (which might also be referred to as enterprise AI) is mainly the use of machine learning and deep learning models in real-world applications. A closely related trend that also made it to McKinseys top-14 list is industrializing machine learning, which refers to MLOps platforms and other tools that make it easier to train, deploy, integrate, and update ML models in different applications and environments.
McKinseys findings, which are in line with similar reports released by consulting and research firms, show that after a decade of investment, research, and development of tools, the barriers to applied AI are slowly fading.
Large tech companies, which often house many of the top machine learning/deep learning scientists and engineers, have been researching new algorithms and applying them to their products for years. Thanks to the developments highlighted in McKinseys report, more organizations can adopt machine learning models in their applications and bring their benefits to their customers and users.
The recent decade has seen a revived and growing mainstream interest in artificial intelligence, mainly thanks to the proven capabilities of deep neural networks in performing tasks that were previously thought to be beyond the limits of computers. During the same period, the machine learning research community has made very impressive progress in some of the challenging areas of AI, including computer vision and natural language processing.
The scientific breakthroughs in machine learning were largely made possible because of the growing capabilities to collect, store, and access data in different domains. At the same time, advances in processors and cloud computing have made it possible to train and run neural networks at speeds and scales that were previously thought to be impossible.
Some of the milestone achievements of deep learning were followed by news cycles that publicized (and often exaggerated) the capabilities of contemporary AI. Today, many companies try to present themselves as AI first, or pitch their products as using the latest and greatest in deep learning.
However, bringing ML from research labs to actual products presents several challenges, which is why most machine learning strategies fail. Creating and maintaining products that use machine learning requires different infrastructure, tools, and skill sets than those used in traditional software. Organizations need data lakes to collect and store data, and data engineers to set up, maintain, and configure the data infrastructure that makes it possible to train and update ML models. They need data scientists and ML engineers to prepare the data and models that will power their applications. They need distributed computing experts that can make ML models run in a time- and cost-efficient manner and at scale. And they need product managers who can adapt the ML system to their business model and software engineers who can integrate the ML pipeline into their products.
The data, hardware, and talent costs that come with enterprise AI have been often too prohibitive for smaller organizations to make long-term investments in ML strategies.
It is against this backdrop that the McKinsey & Company reports findings are worth examining.
The report ranks tech trends based on five quantifiable measures: search engine queries, news publications, patents, research publications, and investment. It is worth noting that such quantitative measures dont always paint the most accurate picture of the relevance of a trend. But tracking them over time can give a good estimate of how a technology goes through the different steps of hype, adoption, and productivity cycle.
McKinsey further corroborated its findings through surveys and interviews with experts from 20 different industries, which gives a better picture of what the opportunities and challenges are.
The report is based on 2018-2021 data, which does not fully account for the downturn that capital markets are currently undergoing. According to the findings, applied AI has seen growth in all quantifiable measures except for the search engine queries category (which is a grey area, since AI terms and trends are constantly evolving). McKinsey gives applied AI the highest innovation score and top-five investment score with $165 billion in 2021.
(Measuring investment is also very subjective and depends on how you define applied AIe.g., if a company that secures a huge round of funding uses machine learning as a small part of its product, will it count as an investment in applied AI?)
In terms of industry relevance, some of the ML applications mentioned in the report include use cases such as recommendation engines (e.g., content recommendation, smart upselling), detection and prevention (e.g., credit card fraud detection, customer complaint modeling, early disease diagnosis, defect prediction), and time series analysis (e.g., managing price volatility, demand forecasting). Interestingly, these are some of the areas of machine learning where the algorithms have been well-developed for years. Though computer vision is only mentioned once in the use cases, some of the applications might benefit from it (e.g., document scanning, equipment defect detection).
The report also mentions some of the more advanced areas of machine learning, such as generative deep learning models (e.g., simulation engines for self-driving cars, generating chemical compounds), transformer models (e.g., drug discovery), graph neural networks, and robotics.
This further drives the point that the main hurdle for the adoption of applied AI has not been poor machine learning algorithms but the lack of tooling and infrastructure to put well-known and -tested algorithms to efficient use. These constraints have limited the use of applied AI to companies that dont have enormous resources and access to scarce machine learning talent.
In recent years, there has been tremendous advances in some of these fronts. Weve seen the advent and maturity of no-code ML platforms, easy-to-use ML programming libraries, API-based ML services (MLaaS), and special hardware for training and running ML models. At the same time, the data storage technologies underlying ML services have evolved to become more flexible, interoperable, and scalable. Meanwhile, some enterprise AI companies have started to develop and provide ML solutions for specific sectors (e.g., financial services, oil and gas, retail).
All these developments reduce the financial and technical barriers to adopting machine learning in their business models. In many cases, companies can integrate ML services into their applications without having in-depth knowledge of the algorithms running in the background.
According to McKinseys 2021 survey of industry experts, 56 percent of respondents said their organizations had adopted AI, up from 50 percent in the 2020 survey. The 2021 survey also indicated that adopting AI can have financial benefits: 27 percent of respondents attributed 5 percent or more of their companies EBIT to AI.
The second AI-related tech trend included in the McKinsey & Company report is the industrialization of machine learning. This is a vague term and has much overlap with the applied AI category, so the report defines it as an interoperable stack of technical tools for automating ML and scaling up its use so that organizations can realize its full potential.
The technologies underlying advances in this field are mostly the same that have led to the growth of applied AI (better data storage platforms, hardware stacks, ML development tools and platforms, etc.). However, one specific field that has seen impressive developments in recent years is machine learning operations (MLOps), the set of tools and practices that streamline the training, deployment, and maintenance of ML models.
MLOps platforms provide tools for curating, processing, and labeling data; training and comparing different machine learning models; versioning control for dataset and models; deploying ML models and monitoring their performance; and updating ML models as their performance decays, their environment changes, and new data becomes available. MLOps platforms, which are growing in number and maturity, bring together several different tasks that were previously carried out desperately and in an ad hoc fashion.
According to the report, the industrialization of machine learning can shorten the production time frame for ML applications by 90 percent (from proof of concept to product) and reduce development resources by up to 40 percent.
Despite the advances in applied AI, the field still has some gaps to bridge. The McKinsey report states that the availability of resources such as talent and funding remain two of the hurdles for the further growth of enterprise AI. Currently, the capital markets are in a downturn, and all sectors, including AI, are facing problems funding their startups and companies.
However, despite the AI capital pie becoming smaller, funding has not stopped altogether. According to a recent CB Insights report, companies that have already achieved product/market fit and are ready for aggressive growth are still managing to secure mega-funding rounds (above $100 million). This suggests that companies that dont have the margins to launch new ML strategies will have a hard time receiving outside funding. But applied ML platforms that have already cornered their share of the market will continue to draw interest from investors.
Another important challenge that the report mentions is data risks and vulnerabilities. This is becoming an increasingly critical issue for applied machine learning. Like its development lifecycle, the security threat landscape of machine learning is different from that of traditional software. The security tools used in most software development platforms are not designed to detect adversarial examples, data poisoning, membership inference attacks, and other types of threats against ML models.
Fortunately, the security and machine learning communities are coming together to develop tools and practices for creating secure ML pipelines. As applied AI continues to grow, we can expect other sectors to speed up their adoption of ML, which will in turn further accelerate the pace of innovation in the field.
Here is the original post:
The growth stage of applied AI and MLOps - TechTalks
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]