Theres No Such Thing As The Machine Learning Platform – Forbes
In the past few years, you might have noticed the increasing pace at which vendors are rolling out platforms that serve the AI ecosystem, namely addressing data science and machine learning (ML) needs. The Data Science Platform and Machine Learning Platform are at the front lines of the battle for the mind share and wallets of data scientists, ML project managers, and others that manage AI projects and initiatives. If youre a major technology vendor and you dont have some sort of big play in the AI space, then you risk rapidly becoming irrelevant. But what exactly are these platforms and why is there such an intense market share grab going on?
The core of this insight is the realization that ML and data science projects are nothing like typical application or hardware development projects. Whereas in the past hardware and software development aimed to focus on the functionality of systems or applications, data science and ML projects are really about managing data, continuously evolving learning gleaned from data, and the evolution of data models based on constant iteration. Typical development processes and platforms simply dont work from a data-centric perspective.
It should be no surprise then that technology vendors of all sizes are focused on developing platforms that data scientists and ML project managers will depend on to develop, run, operate, and manage their ongoing data models for the enterprise. To these vendors, the ML platform of the future is like the operating system or cloud environment or mobile development platform of the past and present. If you can dominate market share for data science / ML platforms, you will reap rewards for decades to come. As a result, everyone with a dog in this fight is fighting to own a piece of this market.
However, what does a Machine Learning platform look like? How is it the same or different than a Data Science platform? What are the core requirements for ML Platforms, and how do they differ from more general data science platforms? Who are the users of these platforms, and what do they really want? Lets dive deeper.
What is the Data Science Platform?
Data scientists are tasked with wrangling useful information from a sea of data and translating business and operational informational needs into the language of data and math. Data scientists need to be masters of statistics, probability, mathematics, and algorithms that help to glean useful insights from huge piles of information. A data scientist creates data hypothesis, runs tests and analysis of the data, and then translates their results for someone else in the organization to easily view and understand. So it follows that a pure data science platform would meet the needs of helping craft data models, determining the best fit of information to a hypothesis, testing that hypothesis, facilitating collaboration amongst teams of data scientists, and helping to manage and evolve the data model as information continues to change.
Furthermore, data scientists dont focus their work in code-centric Integrated Development Environments (IDEs), but rather in notebooks. First popularized by academically-oriented math-centric platforms like Mathematica and Matlab, but now prominent in the Python, R, and SAS communities, notebooks are used to document data research and simplify reproducibility of results by allowing the notebook to run on different source data. The best notebooks are shared, collaborative environments where groups of data scientists can work together and iterate models over constantly evolving data sets. While notebooks dont make great environments for developing code, they make great environments to collaborate, explore, and visualize data. Indeed, the best notebooks are used by data scientists to quickly explore large data sets, assuming sufficient access to clean data.
However, data scientists cant perform their jobs effectively without access to large volumes of clean data. Extracting, cleaning, and moving data is not really the role of a data scientist, but rather that of a data engineer. Data engineers are challenged with the task of taking data from a wide range of systems in structured and unstructured formats, and data which is usually not clean, with missing fields, mismatched data types, and other data-related issues. In this way, the role of a data engineer is an engineer who designs, builds and arranges data. Good data science platforms also enable data scientists to easily leverage compute power as their needs grow. Instead of copying data sets to a local computer to work on them, platforms allow data scientists to easily access compute power and data sets with minimal hassle. A data science platform is challenged with the needs to provide these data engineering capabilities as well. As such, a practical data science platform will have elements of data science capabilities and necessary data engineering functionality.
What is the Machine Learning Platform?
We just spent several paragraphs talking about data science platforms and not even once mentioned AI or ML. Of course, the overlap is the use of data science techniques and machine learning algorithms applied to the large sets of data for the development of machine learning models. The tools that data scientists use on a daily basis have significant overlap with the tools used by ML-focused scientists and engineers. However, these tools arent the same, because the needs of ML scientists and engineers are not the same as more general data scientists and engineers.
Rather than just focusing on notebooks and the ecosystem to manage and work collaboratively with others on those notebooks, those tasked with managing ML projects need access to the range of ML-specific algorithms, libraries, and infrastructure to train those algorithms over large and evolving datasets. An ideal ML platforms helps ML engineers, data scientists, and engineers discover which machine learning approaches work best, how to tune hyperparameters, deploy compute-intensive ML training across on-premise or cloud-based CPU, GPU, and/or TPU clusters, and provide an ecosystem for managing and monitoring both unsupervised as well as supervised modes of training.
Clearly a collaborative, interactive, visual system for developing and managing ML models in a data science platform is necessary, but its not sufficient for an ML platform. As hinted above, one of the more challenging parts of making ML systems work is the setting and tuning of hyperparameters. The whole concept of a machine learning model is that it requires various parameters to be learned from the data. Basically, what machine learning is actually learning are the parameters of the data, and fitting new data to that learned model. Hyperparameters are configurable data values that are set prior to training an ML model that cant be learned from data. These hyperparameters indicate various factors such as complexity, speed of learning, and more. Different ML algorithms require different hyperparameters, and some dont need any at all. ML platforms help with the discovery, setting, and management of hyperparameters, among other things including algorithm selection and comparison that non-ML specific data science platforms dont provide.
The different needs of big data, ML engineering, model management, operationalization
At the end of the day, ML project managers simply want tools to make their jobs more efficient and effective. But not all ML projects are the same. Some are focused on conversational systems, while others are focused on recognition or predictive analytics. Yet others are focused on reinforcement learning or autonomous systems. Furthermore, these models can be deployed (or operationalized) in various different ways. Some models might reside in the cloud or on-premise servers while others are deployed to edge devices or offline batch modes. These differences in ML application, deployment, and needs between data scientists, engineers, and ML developers makes the concept of a single ML platform not particularly feasible. It would be a jack of all trades and master of none.''
As such, we see four different platforms emerging. One focused on the needs of data scientists and model builders, another focused on big data management and data engineering, yet another focused on model scaffolding and building systems to interact with models, and a fourth focused on managing the model lifecycle - ML Ops. The winners will focus on building out capabilities for each of these parts.
The Four Environments of AI (Source: Cognilytica)
The winners in the data science platform race will be the ones that simplify ML model creation, training, and iteration. They will make it quick and easy for companies to move from dumb unintelligent systems to ones that leverage the power of ML to solve problems that previously could not be addressed by machines. Data science platforms that dont enable ML capabilities will be relegated to non-ML data science tasks. Likewise, those big data platforms that inherently enable data engineering capabilities will be winners. Similarly, application development tools will need to treat machine learning models as first-class participants in their lifecycle just like any other form of technology asset. Finally, the space of ML operations (ML Ops) is just now emerging and will no doubt be big news in the next few years.
When a vendor tells you they have an AI or ML platform, the right response is to say which one?. As you can see, there isnt just one ML platform, but rather different ones that serve very different needs. Make sure you dont get caught up in the marketing hype of some of these vendors with what they say they have with what they actually have.
View original post here:
Theres No Such Thing As The Machine Learning Platform - Forbes
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]