Uncertainty-aware deep learning for trustworthy prediction of long-term outcome after endovascular thrombectomy … – Nature.com
Global Burden of Disease Stroke Expert Group and others. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 379, 24292437 (2018).
Article Google Scholar
Goyal, M. et al. Endovascular thrombectomy after large-vessel Ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 387, 17231731 (2016).
Article PubMed Google Scholar
Albers, G. W. et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 378, 708718 (2018).
Article PubMed PubMed Central Google Scholar
Nogueira, R. G. et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 1121 (2018).
Article PubMed Google Scholar
Quinn, T., Dawson, J., Walters, M. & Lees, K. Functional outcome measures in contemporary stroke trials. Int. J. Stroke 4, 200205 (2009).
Article CAS PubMed Google Scholar
Johnston, K. C., Wagner, D. P., Haley, E. C. Jr. & Connors, A. F. Jr. Combined clinical and imaging information as an early stroke outcome measure. Stroke 33, 466472 (2002).
Article PubMed PubMed Central Google Scholar
Asadi, H., Dowling, R., Yan, B. & Mitchell, P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE 9, e88225 (2014).
Article ADS PubMed PubMed Central Google Scholar
Monteiro, M. et al. Using machine learning to improve the prediction of functional outcome in ischemic stroke patients. IEEE/ACM Trans. Comput. Biol. Bioinf. 15, 19531959 (2018).
Article Google Scholar
Heo, J. et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke 50, 12631265 (2019).
Article PubMed Google Scholar
Bacchi, S. et al. Deep learning in the prediction of Ischaemic stroke thrombolysis functional outcomes: A pilot study. Acad. Radiol. 27, e19e23 (2020).
Article PubMed Google Scholar
Alaka, S. A. et al. Functional outcome prediction in ischemic stroke: A comparison of machine learning algorithms and regression models. Front. Neurol. 11, 889 (2020).
Article PubMed PubMed Central Google Scholar
Begoli, E., Bhattacharya, T. & Kusnezov, D. The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1, 2023 (2019).
Article Google Scholar
Kim, D.-Y. et al. Deep learning-based personalised outcome prediction after acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 94, 369378 (2023).
Article PubMed Google Scholar
Vora, N. A. et al. A 5-item scale to predict stroke outcome after cortical middle cerebral artery territory infarction: Validation from results of the diffusion and perfusion imaging evaluation for understanding stroke evolution (defuse) study. Stroke 42, 645649 (2011).
Article PubMed Google Scholar
Panni, P. et al. Acute stroke with large ischemic core treated by thrombectomy: Predictors of good outcome and mortality. Stroke 50, 11641171 (2019).
Article PubMed Google Scholar
Van Os, H. J. et al. Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms. Front. Neurol. 9, 784 (2018).
Article PubMed PubMed Central Google Scholar
Xie, Y. et al. Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. Am. J. Roentgenol. 212, 4451 (2019).
Article Google Scholar
Thakkar, H. K., Liao, W.-W., Wu, C.-Y., Hsieh, Y.-W. & Lee, T.-H. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J. Neuroeng. Rehabil. 17, 110 (2020).
Article Google Scholar
Shao, H. et al. A new machine learning algorithm with high interpretability for improving the safety and efficiency of thrombolysis for stroke patients: A hospital-based pilot study. Digit. Health 9, 20552076221149530 (2023).
PubMed PubMed Central Google Scholar
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric deep learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 34, 1842 (2017).
Article ADS Google Scholar
Parisot, S. et al. Spectral graph convolutions for population-based disease prediction. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Parisot, S. et al.) 177185 (Springer, 2017).
Google Scholar
Kazi, A. et al. Inceptiongcn: Receptive field aware graph convolutional network for disease prediction. In International Conference on Information Processing in Medical Imaging (eds Kazi, A. et al.) 7385 (Springer, 2019).
Chapter Google Scholar
Ravindra, N., Sehanobish, A., Pappalardo, J.L., Hafler, D.A. & van Dijk, D. Disease state prediction from single-cell data using graph attention networks. In: Proc. of the ACM conference on health, inference, and learning, 121130 (2020).
Huang, Y. & Chung, A. C. Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022).
Article PubMed Google Scholar
Loftus, T. J. et al. Uncertainty-aware deep learning in healthcare: A scoping review. PLOS Digit. Health 1, e0000085 (2022).
Article PubMed PubMed Central Google Scholar
Abdar, M. et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion 76, 243297 (2021).
Article Google Scholar
Abdar, M., Khosravi, A., Islam, S. M. S., Acharya, U. R. & Vasilakos, A. V. The need for quantification of uncertainty in artificial intelligence for clinical data analysis: Increasing the level of trust in the decision-making process. IEEE Syst. Man Cybern. Magaz. 8, 2840 (2022).
Article Google Scholar
Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.) 13211330 (PMLR, 2017).
Google Scholar
Pearce, T., Brintrup, A. & Zhu, J. Understanding softmax confidence and uncertainty. Preprint at arXiv:2106.04972 (2021).
Alarab, I., Prakoonwit, S. & Nacer, M. I. Illustrative discussion of mc-dropout in general dataset: Uncertainty estimation in bitcoin. Neural Process. Lett. 53, 10011011 (2021).
Article Google Scholar
Alarab, I. & Prakoonwit, S. Uncertainty estimation-based adversarial attacks: a viable approach for graph neural networks. Soft Computing 113 (2023).
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning (eds Gal, Y. & Ghahramani, Z.) 10501059 (PMLR, 2016).
Google Scholar
Singer, O. C. et al. Collateral vessels in proximal middle cerebral artery occlusion: The endostroke study. Radiology 274, 851858 (2015).
Article PubMed Google Scholar
Bang, O. Y. et al. Impact of collateral flow on tissue fate in acute Ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 79, 625629 (2008).
Article CAS PubMed Google Scholar
Menon, B. K. et al. Assessment of leptomeningeal collaterals using dynamic ct angiography in patients with acute ischemic stroke. J. Cerebral Blood Flow Metabol. 33, 365371 (2013).
Article Google Scholar
Berkhemer, O. A. et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 47, 768776 (2016).
Article CAS PubMed Google Scholar
Menon, B. et al. Regional leptomeningeal score on ct angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. Am. J. Neuroradiol. 32, 16401645 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kucinski, T. et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45, 1118 (2003).
Article CAS PubMed Google Scholar
Sheth, S. A. et al. Collateral flow as causative of good outcomes in endovascular stroke therapy. J. Neurointerv. Surg. 8, 27 (2016).
Article PubMed Google Scholar
Seyman, E. et al. The collateral circulation determines cortical infarct volume in anterior circulation ischemic stroke. BMC Neurol. 16, 19 (2016).
Article Google Scholar
Elijovich, L. et al. Cta collateral score predicts infarct volume and clinical outcome after endovascular therapy for acute ischemic stroke: a retrospective chart review. J. Neurointerv. Surg. 8, 559562 (2016).
Article PubMed Google Scholar
Prasetya, H. et al. Value of ct perfusion for collateral status assessment in patients with acute ischemic stroke. Diagnostics 12, 3014 (2022).
Article PubMed PubMed Central Google Scholar
Potreck, A. et al. Rapid ct perfusion-based relative cbf identifies good collateral status better than hypoperfusion intensity ratio, cbv-index, and time-to-maximum in anterior circulation stroke. Am. J. Neuroradiol. 43, 960965 (2022).
Article CAS PubMed PubMed Central Google Scholar
Olivot, J. M. et al. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the defuse 2 cohort. Stroke 45, 10181023 (2014).
Article PubMed PubMed Central Google Scholar
Li, B.-H. et al. Cerebral blood volume index may be a predictor of independent outcome of thrombectomy in stroke patients with low aspects. J. Clin. Neurosci. 103, 188192 (2022).
Article ADS PubMed Google Scholar
Laredo, C. et al. Clinical and therapeutic variables may influence the association between infarct core predicted by ct perfusion and clinical outcome in acute stroke. Eur. Radiol. 32, 45104520 (2022).
Article CAS PubMed Google Scholar
Christodoulou, E. et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 1222 (2019).
Article PubMed Google Scholar
Ramos, L. A. et al. Predicting poor outcome before endovascular treatment in patients with acute ischemic stroke. Front. Neurol. 11, 580957 (2020).
Article PubMed PubMed Central Google Scholar
Leker, R. R. et al. Post-stroke aspects predicts outcome after thrombectomy. Neuroradiology 63, 769775 (2021).
Article PubMed Google Scholar
Peng, H., Long, F. & Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 12261238 (2005).
Article PubMed Google Scholar
Zhao, Z., Anand, R. & Wang, M. Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (eds Zhao, Z. et al.) 442452 (IEEE, 2019).
Chapter Google Scholar
Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems Vol. 32 (eds Paszke, A. et al.) 80248035 (Curran Associates, Inc., 2019).
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]
- Between rain and snow, machine learning finds 9 precipitation types - Michigan Engineering News - October 9th, 2025 [October 9th, 2025]
- Machine learning optimizes nanoparticle design for drug delivery to the brain - Physics World - October 9th, 2025 [October 9th, 2025]
- Development and validation of a machine learning-based prediction model for prolonged length of stay after laparoscopic gastrointestinal surgery: a... - October 9th, 2025 [October 9th, 2025]
- G Sachs: Stock Mkt Not in Bubble Yet; Machine Learning/ AI Expected to Spawn New Wave of Superstars - AASTOCKS.com - October 9th, 2025 [October 9th, 2025]
- AI and Machine Learning - See.Sense works with City of Sydney to develop AI dashboard - Smart Cities World - October 9th, 2025 [October 9th, 2025]
- Machine Learning Used to Predict Live Birth Outcomes in Fresh Embryo Transfers - geneonline.com - October 9th, 2025 [October 9th, 2025]
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]