Unlocking the potential of IoT systems: The role of Deep Learning … – Innovation News Network
The Internet of Things (IoT), a network of interconnected devices equipped with sensors and software, has revolutionised how we interact with the world around us, empowering us to collect and analyse data like never before.
As technology advances and becomes more accessible, more objects are equipped with connectivity and sensor capabilities, making them part of the IoT ecosystem. The number of active IoT systems is expected to reach 29.7 billion by 2027, marking a significant surge from the 3.6 billion devices recorded in 2015. This exponential growth requires a tremendous demand for solutions to mitigate the safety and computational challenges of IoT applications. In particular, industrial IoT, automotive, and smart homes are three main areas with specific requirements, but they share a common need for efficient IoT systems to enable optimal functionality and performance.
Increasing the efficiency of IoT systems and unlocking their potential can be achieved through Artificial Intelligence (AI), creating AIoT architectures. By utilising sophisticated algorithms and Machine Learning techniques, AI empowers IoT systems to make intelligent decisions, process vast amounts of data, and extract valuable insights. For instance, this integration drives operational optimisation in industrial IoT, facilitates advanced autonomous vehicles, and offers intelligent energy management and personalised experiences in smart homes.
Among the different AI algorithms, Deep Learning that leverages artificial neural networks is very appropriate for IoT systems for several reasons. One of the primary reasons is its ability to learn and extract features automatically from raw sensor data. This is particularly valuable in IoT applications where the data can be unstructured, noisy, or have complex relationships. Additionally, Deep Learning enables IoT applications to handle real-time and streaming data efficiently. This ability allows for continuous analysis and decision-making, which is crucial in time-sensitive applications such as real-time monitoring, predictive maintenance, or autonomous control systems.
Despite the numerous advantages of Deep Learning for IoT systems, its implementation has inherent challenges, such as efficiency and safety, that must be addressed to fully leverage its potential. The Very Efficient Deep Learning in IoT (VEDLIoT) project aims to solve these challenges.
A high-level overview of the different VEDLIoT components is given in Fig. 1. IoT is integrated with Deep Learning by the VEDLIoT project to accelerate applications and optimise the energy efficiency of IoT. VEDLIoT achieves these objectives through the utilisation of several key components:
VEDLIoT concentrates on some use cases, such as demand-oriented interaction methods in smart homes (see Fig. 2), industrial IoT applications like Motor Condition Classification and Arc Detection, and the Pedestrian Automatic Emergency Braking (PAEB) system in the automotive sector (see Fig. 3). VEDLIoT systematically optimises such use cases through a bottom-up approach by employing requirement engineering and verification techniques, as shown in Fig. 1. The project combines expert-level knowledge from diverse domains to create a robust middleware that facilitates development through testing, benchmarking, and deployment frameworks, ultimately ensuring the optimisation and effectiveness of Deep Learning algorithms within IoT systems. In the following sections, we briefly present each component of the VEDLIoT project.
Various accelerators are available for a wide range of applications, from small embedded systems with power budgets in the milliwatt range to high-power cloud platforms. These accelerators are categorised into three main groups based on their peak performance values, as shown in Fig. 4.
The first group is the ultra-low power category (< 3 W), which consists of energy-efficient microcontroller-style cores combined with compact accelerators for specific Deep Learning functions. These accelerators are designed for IoT applications and offer simple interfaces for easy integration. Some accelerators in this category provide camera or audio interfaces, enabling efficient vision or sound processing tasks. They may offer a generic USB interface, allowing them to function as accelerator devices attached to a host processor. These ultra-low power accelerators are ideal for IoT applications where energy efficiency and compactness are key considerations, providing optimised performance for Deep Learning tasks without excessive power.
The VEDLIoT use case of predictive maintenance is a good example and makes use of an ultra-low power accelerator. One of the most important design criteria is low power consumption, as it is a battery-powered small box that can externally be installed on any electric motor and should monitor the electronic motor for at least three years without a battery change.
The next category is the low-power group (3 W to 35 W), which targets a broad range of automation and automotive applications. These accelerators feature high-speed interfaces for external memories and peripherals and efficient communication with other processing devices or host systems such as PCIe. They support modular and microserver-based approaches and provide compatibility with various platforms. Additionally, many accelerators in this category incorporate powerful application processors capable of running full Linux operating systems, allowing for flexible software development and integration. Some devices in this category include dedicated application-specific integrated circuits (ASICs), while others feature NVIDIAs embedded graphics processing units (GPUs). These accelerators balance power efficiency and processing capabilities, making them well-suited for various compute-intensive tasks in the automation and automotive domains.
The high-performance category (> 35 W) of accelerators is designed for demanding inference and training scenarios in edge and cloud servers. These accelerators offer exceptional processing power, making them suitable for computationally-intensive tasks. They are commonly deployed as PCIe extension cards and provide high-speed interfaces for efficient data transfer. The devices in this category have high thermal design powers (TDPs), indicating their ability to handle significant workloads. These accelerators include dedicated ASICs, known for their specialised performance in Deep Learning tasks. They deliver accelerated processing capabilities, enabling faster inference and training times. Some consumer-class GPUs may also be included in benchmarking comparisons to provide a broader perspective.
Selecting the proper accelerator from the abovementioned wide range of available options is not straightforward. However, VEDLIoT takes on this crucial responsibility by conducting thorough assessments and evaluations of various architectures, including GPUs, field-programmable gate arrays (FPGAs), and ASICs. The project carefully examines these accelerators performances and energy consumptions to ensure their suitability for specific use cases. By leveraging its expertise and comprehensive evaluation process, VEDLIoT guides the selection of Deep Learning accelerators within the project and in the broader landscape of IoT and Deep Learning applications.
Trained Deep Learning models have redundancy that can sometimes be compressed to 49 times their original size, with negligible accuracy loss. Although many works are related to such compression, most results show theoretical speed-ups that only sometimes translate into more efficient hardware execution since they do not consider the target hardware. On the other hand, the process of deploying Deep Learning models on edge devices involves several steps, such as training, optimisation, compilation, and runtime. Although various frameworks are available for these steps, their interoperability can vary, resulting in different outcomes and performance levels. VEDLIoT addresses these challenges through hardware-aware model optimisation using ONNX, an open format for representing Machine Learning models, ensuring compatibility with the current open ecosystem. Additionally, Renode, an open-source simulation framework, serves as a functional simulator for complex heterogeneous systems, allowing for the simulation of complete System-on-Chips (SoCs) and the execution of the same software used on hardware.
Furthermore, VEDLIoT uses the EmbeDL toolkit to optimise Deep Learning models. The EmbeDL toolkit offers comprehensive tools and techniques to optimise Deep Learning models for efficient deployment on resource-constrained devices. By considering hardware-specific constraints and characteristics, the toolkit enables developers to compress, quantise, prune, and optimise models while minimising resource utilisation and maintaining high inference accuracy. EmbeDL focuses on hardware-aware optimisation and ensures that Deep Learning models can be effectively deployed on edge devices and IoT devices, unlocking the potential for intelligent applications in various domains. With EmbeDL, developers can achieve superior performance, faster inference, and improved energy efficiency, making it an essential resource for those seeking to maximise the potential of Deep Learning in real-world applications.
Since VEDLIoT aims to combine Deep Learning with IoT systems, ensuring security and safety becomes crucial. In order to emphasise these aspects in its core, the project leverages trusted execution environments (TEEs), such as Intel SGX and ARM TrustZone, along with open-source runtimes like WebAssembly. TEEs provide secure environments that isolate critical software components and protect against unauthorised access and tampering. By using WebAssembly, VEDLIoT offers a common environment for execution throughout the entire continuum, from IoT, through the edge and into the cloud.
In the context of TEEs, VEDLIoT introduces Twine and WaTZ as trusted runtimes for Intels SGX and ARMs TrustZone, respectively. These runtimes simplify software creation within secure environments by leveraging WebAssembly and its modular interface. This integration bridges the gap between trusted execution environments and AIoT, helping to seamlessly integrate Deep Learning frameworks. Within TEEs using WebAssembly, VEDLIoT achieves hardware-independent robust protection against malicious interference, preserving the confidentiality of both data and Deep Learning models. This integration highlights VEDLIoTs commitment to securing critical software components, enabling secure development, and facilitating privacy-enhanced AIoT applications in cloud-edge environments.
Additionally, VEDLIoT employs a specialised architectural framework, as shown in Fig. 5, that helps to define, synchronise and co-ordinate requirements and specifications of AI components and traditional IoT system elements. This framework consists of various architectural views that address the systems specific design concerns and quality aspects, including security and ethical considerations. By using these architecture views as templates and filling them out, correspondences and dependencies can be identified between the quality-defining architecture views and other design decisions, such as AI model construction, data selection, and communication architecture. This holistic approach ensures that security and ethical aspects are seamlessly integrated into the overall system design, reinforcing VEDLIoTs commitment to robustness and addressing emerging challenges in AI-enabled IoT systems.
Traditional hardware platforms support only homogeneous IoT systems. However, RECS, an AI-enabled microserver hardware platform, allows for the seamless integration of diverse technologies. Thus, it enables fine-tuning of the platform towards specific applications, providing a comprehensive cloud-to-edge platform. All RECS variants share the same design paradigm to be a densely-coupled, highly-integrated communication infrastructure. For the varying RECS variants, different microserver sizes are used, from credit card size to tablet size. This allows customers to choose the best variant for each use case and scenario. Fig. 6 gives an overview of the RECS variants.
The three different RECS platforms are suitable for cloud/data centre (RECS|Box), edge (t.RECS) and IoT usage (u.RECS). All RECS servers use industry-standard microservers, which are exchangeable and allow for use of the latest technology just by changing a microserver. Hardware providers of these microservers offer a wide spectrum of different computing architectures like Intel, AMD and ARM CPUs, FPGAs and combinations of a CPU with an embedded GPU or AI accelerator.
VEDLIoT addresses the challenge of bringing Deep Learning to IoT devices with limited computing performance and low-power budgets. The VEDLIoT AIoT hardware platform provides optimised hardware components and additional accelerators for IoT applications covering the entire spectrum, from embedded via edge to the cloud. On the other hand, a powerful middleware is employed to ease the programming, testing, and deployment of neural networks in heterogeneous hardware. New methodologies for requirement engineering, coupled with safety and security concepts, are incorporated throughout the complete framework. The concepts are tested and driven by challenging use cases in key industry sectors like automotive, automation, and smart homes.
Please note, this article will also appear in the fifteenthedition of ourquarterly publication.
See the rest here:
Unlocking the potential of IoT systems: The role of Deep Learning ... - Innovation News Network
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]
- The future of PC gaming will be AI-driven - AMD confirms machine learning FSR 4 for 2025, launching in Call of Duty: Black Ops 6 - TechRadar - November 4th, 2024 [November 4th, 2024]
- Machine-Learning Platform Gives DoD Ability To ID Threat Network Activity - Defense Innovation Unit - November 4th, 2024 [November 4th, 2024]
- Machine Learning Offers a Water Bill Discount to Wealthy Portlander - Willamette Week - November 4th, 2024 [November 4th, 2024]
- Researcher to discuss impact of machine learning, AI Nov. 12 at SBU - Olean Times Herald - November 4th, 2024 [November 4th, 2024]
- Design and predict the potential of imidazole-based organic dyes in dye-sensitized solar cells using fingerprint machine learning and supported by a... - November 4th, 2024 [November 4th, 2024]
- AMDs Next-Gen FSR with machine learning is coming to Call of Duty Black Ops 6 - VideoCardz.com - November 4th, 2024 [November 4th, 2024]
- Machine-learning analysis tracks the evolution of 16th-century European astronomical thought - Phys.org - November 4th, 2024 [November 4th, 2024]
- Machine learning reveals secrets of aging in flies and humans - News-Medical.Net - November 4th, 2024 [November 4th, 2024]
- Tevogen Bio Expands on Microsoft Partnership to Integrate Machine Learning and AI into Preclinical Processes, Accelerating Drug Development and... - November 4th, 2024 [November 4th, 2024]
- Social AI: Human and machine learning from one another - UConn Daily Campus - November 4th, 2024 [November 4th, 2024]