A Physicist Reveals the One Quantum Breakthrough That Could Disrupt Scientific Innovation – Inverse
Quantum advantage is the milestone the field of quantum computing is fervently working toward, where a quantum computer can solve problems that are beyond the reach of the most powerful non-quantum or classical computers.
Quantum refers to the scale of atoms and molecules where the laws of physics as we experience them break down, and a different, counterintuitive set of laws apply. Quantum computers take advantage of these strange behaviors to solve problems.
There are some types of problems that are impractical for classical computers to solve, such as cracking state-of-the-art encryption algorithms. Research in recent decades has shown that quantum computers have the potential to solve some of these problems. If a quantum computer can be built that actually does solve one of these problems, it will have demonstrated quantum advantage.
I am a physicist who studies quantum information processing and the control of quantum systems. I believe that this frontier of scientific and technological innovation not only promises groundbreaking advances in computation but also represents a broader surge in quantum technology, including significant advancements in quantum cryptography and quantum sensing.
Central to quantum computing is the quantum bit, or qubit. Unlike classical bits, which can only be in states of 0 or 1, a qubit can be in any state that is some combination of 0 and 1. This state of neither just one nor just 0 is known as a quantum superposition. With every additional qubit, the number of states that can be represented by the qubits doubles.
This property is often mistaken for the source of the power of quantum computing. Instead, it comes down to an intricate interplay of superposition, interference, and entanglement.
Interference involves manipulating qubits so that their states combine constructively during computations to amplify correct solutions and destructively suppress the wrong answers. Constructive interference is what happens when the peaks of two waves like sound waves or ocean waves combine to create a higher peak. Destructive interference is what happens when a wave peak and a wave trough combine and cancel each other out. Quantum algorithms, which are few and difficult to devise, set up a sequence of interference patterns that yield the correct answer to a problem.
Entanglement establishes a uniquely quantum correlation between qubits: The state of one cannot be described independently of the others, no matter how far apart the qubits are. This is what Albert Einstein famously dismissed as spooky action at a distance. Entanglements collective behavior, orchestrated through a quantum computer, enables computational speed-ups that are beyond the reach of classical computers.
Quantum computing has a range of potential uses where it can outperform classical computers. In cryptography, quantum computers pose both an opportunity and a challenge. Most famously, they have the potential to decipher current encryption algorithms, such as the widely used RSA scheme.
One consequence of this is that todays encryption protocols need to be re-engineered to be resistant to future quantum attacks. This recognition has led to the burgeoning field of post-quantum cryptography. After a long process, the National Institute of Standards and Technology recently selected four quantum-resistant algorithms and has begun the process of readying them so that organizations around the world can use them in their encryption technology.
In addition, quantum computing can dramatically speed up quantum simulation: the ability to predict the outcome of experiments operating in the quantum realm. Famed physicist Richard Feynman envisioned this possibility more than 40 years ago. Quantum simulation offers the potential for considerable advancements in chemistry and materials science, aiding in areas such as the intricate modeling of molecular structures for drug discovery and enabling the discovery or creation of materials with novel properties.
Another use of quantum information technology is quantum sensing: detecting and measuring physical properties like electromagnetic energy, gravity, pressure, and temperature with greater sensitivity and precision than non-quantum instruments. Quantum sensing has myriad applications in fields such as environmental monitoring, geological exploration, medical imaging, and surveillance.
Initiatives such as the development of a quantum internet that interconnects quantum computers are crucial steps toward bridging the quantum and classical computing worlds. This network could be secured using quantum cryptographic protocols such as quantum key distribution, which enables ultra-secure communication channels that are protected against computational attacks including those using quantum computers.
Despite a growing application suite for quantum computing, developing new algorithms that make full use of the quantum advantage in particular in machine learning remains a critical area of ongoing research.
The quantum computing field faces significant hurdles in hardware and software development. Quantum computers are highly sensitive to any unintentional interactions with their environments. This leads to the phenomenon of decoherence, where qubits rapidly degrade to the 0 or 1 states of classical bits.
Building large-scale quantum computing systems capable of delivering on the promise of quantum speed-ups requires overcoming decoherence. The key is developing effective methods of suppressing and correcting quantum errors, an area my own research is focused on.
In navigating these challenges, numerous quantum hardware and software startups have emerged alongside well-established technology industry players like Google and IBM. This industry interest, combined with significant investment from governments worldwide, underscores a collective recognition of quantum technologys transformative potential. These initiatives foster a rich ecosystem where academia and industry collaborate, accelerating progress in the field.
Quantum computing may one day be as disruptive as the arrival of generative AI. Currently, the development of quantum computing technology is at a crucial juncture. On the one hand, the field has already shown early signs of having achieved a narrowly specialized quantum advantage. Researchers at Google and later a team of researchers in China demonstrated a quantum advantage for generating a list of random numbers with certain properties. My research team demonstrated a quantum speed-up for a random number guessing game.
On the other hand, there is a tangible risk of entering a quantum winter, a period of reduced investment if practical results fail to materialize in the near term.
While the technology industry is working to deliver quantum advantage in products and services in the near term, academic research remains focused on investigating the fundamental principles underpinning this new science and technology. This ongoing basic research, fueled by enthusiastic cadres of new and bright students of the type I encounter almost every day, ensures that the field will continue to progress.
This article was originally published on The Conversation by Daniel Lidar at the University of Southern California. Read the original article here.
See original here:
A Physicist Reveals the One Quantum Breakthrough That Could Disrupt Scientific Innovation - Inverse
- Bill Gates Sees Quantum Computings Potential Arrival in Three to Five Years - The Quantum Insider - February 5th, 2025 [February 5th, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Quantum Computing Stocks Tumbled in January. Should You Buy the Dip? - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Quantum algorithm distributed across multiple processors for the first timepaving the way to quantum supercomputers - Phys.org - February 5th, 2025 [February 5th, 2025]
- Exploring the potential for quantum advantage in mathematical optimization - IBM - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - USA TODAY - February 5th, 2025 [February 5th, 2025]
- Japan Teams Up with Intel to Build Next-Gen Quantum Computer - Wall Street Pit - February 5th, 2025 [February 5th, 2025]
- Google Quantum AI Head Sees Commercial Quantum Within Five Years - The Quantum Insider - February 5th, 2025 [February 5th, 2025]
- Quantum teleportation used to distribute a calculation - Ars Technica - February 5th, 2025 [February 5th, 2025]
- IBM claims to have booked $1bn of cumulative quantum business - DatacenterDynamics - February 5th, 2025 [February 5th, 2025]
- Is 2025 the year of quantum computing? - InfoWorld - February 5th, 2025 [February 5th, 2025]
- An Analyst Just Tripled His Price Target On This Quantum Computing Stock - Barchart - February 5th, 2025 [February 5th, 2025]
- Interested in Investing in Quantum Computing Stocks? Here's a No-Brainer Buy. - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Gates Thinks Quantum May Arrive in 3 to 5 YearsIs Nvidias Huang Wrong? - Wall Street Pit - February 5th, 2025 [February 5th, 2025]
- The tech behind Quantum Generative AI ... - eeNews Europe - February 5th, 2025 [February 5th, 2025]
- These Artificial Intelligence (AI) Quantum Computing Stocks Could Soar in 2025 - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Japan, Intel said to begin to work on new quantum computer - baha news - February 5th, 2025 [February 5th, 2025]
- Google (GOOGL) Aims to Release Commercial Quantum Computing Apps Within Five Years - TipRanks - February 5th, 2025 [February 5th, 2025]
- Quantum Leap: Is Rigetti Computing the Next Tech Sensation? - Jomfruland.net - February 5th, 2025 [February 5th, 2025]
- Quantum computers new insights into how the universe as we know it could collapse - Cosmos - February 5th, 2025 [February 5th, 2025]
- Cyber Insights 2025: Quantum and the Threat to Encryption - SecurityWeek - February 5th, 2025 [February 5th, 2025]
- The First Step to a Quantum-Safe Future With Samsung Knox - Samsung Global Newsroom - February 5th, 2025 [February 5th, 2025]
- Editorial: Will Technologists Replace Doctors? - HIPAA Journal - February 5th, 2025 [February 5th, 2025]
- The success and failure of quantum computing start-ups - Nature.com - February 5th, 2025 [February 5th, 2025]
- Forget Silicon DNA Might Be the Future of Quantum Computing - SciTechDaily - February 5th, 2025 [February 5th, 2025]
- Scientists Manage to Create Light Particles That Coexist in 37 Dimensions Simultaneously - LBV Magazine - February 5th, 2025 [February 5th, 2025]
- "Commercialization in 3-5 Years" Bill Gates' Remarks Boost Quantum Computer Theme - - February 5th, 2025 [February 5th, 2025]
- Xanadu creates the first-ever scalable photonic quantum computer - Interesting Engineering - January 26th, 2025 [January 26th, 2025]
- Quantum computing could go big this year. Here's a glossary to get you started - Quartz - January 24th, 2025 [January 24th, 2025]
- ZuriQ is rewriting the rules of quantum computing by letting qubits fly - TNW - January 24th, 2025 [January 24th, 2025]
- Is Quantum Computing Investable As The Next AI? - Forbes - January 24th, 2025 [January 24th, 2025]
- The Next Big Cyber Threat Could Come from Quantum Computers Is the Government Ready? - Government Accountability Office - January 24th, 2025 [January 24th, 2025]
- Opinion: The Best Quantum Computing Stock to Buy in 2025 - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- Are trapped molecules the next big thing in quantum computing? - Cosmos - January 24th, 2025 [January 24th, 2025]
- 2 Scorching-Hot Quantum Computing Stocks That Can Plunge Up to 80%, According to 1 Wall Street Analyst - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- Want to Buy Quantum Computing Stocks This Year? 2 Companies That Could Net You Millions in Retirement - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- University of Strathclyde Joins FIRETRACE Project to Overcome Quantum Computing Thermal Challenges - HPCwire - January 24th, 2025 [January 24th, 2025]
- European Commission invests 3M to develop new chip that will help solve quantum computing bottlenecks - Silicon Canals - January 24th, 2025 [January 24th, 2025]
- Researcher: Bitcoin Will Evolve to Meet Quantum Threat - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- Interlune plans to gather scarce lunar Helium-3 for quantum computing on Earth - SpaceNews - January 24th, 2025 [January 24th, 2025]
- Prediction: Quantum Computing Will Be the Biggest AI Trend in 2025, and This Stock Will Lead the Charge - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- How Will AI and Quantum Work Together? Quantinuums View - HPCwire - January 24th, 2025 [January 24th, 2025]
- 2 Scorching-Hot Quantum Computing Stocks That Can Plunge Up to 80%, According to 1 Wall Street Analyst - Yahoo Finance - January 24th, 2025 [January 24th, 2025]
- Lufthansa Partners with DLR, Kipu Quantum, and Eurowings to Advance Quantum Computing for Air Traffic - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- Xanadu Develops Aurora, a Modular Quantum Computing System that Shows a Path for Scaling to Very Large Systems - Quantum Computing Report - January 24th, 2025 [January 24th, 2025]
- Why ZuriQ Thinks Quantum Sceptics Are Far Too Gloomy - Forbes - January 24th, 2025 [January 24th, 2025]
- Scientists Investigate Error Mitigation For Logical Qubits as a Path Toward Reliable Quantum Computing - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- The Risks of Quantum Computing to Cryptocurrency, Bitcoin, and Blockchain - TheStreet - January 24th, 2025 [January 24th, 2025]
- Canadian company Xanadu tests building blocks for commercial quantum computer - The Globe and Mail - January 24th, 2025 [January 24th, 2025]
- Quantum computer helps to answer questions on lattice gauge theory - Phys.org - January 13th, 2025 [January 13th, 2025]
- Quantum computers get automatic error correction for the first time - New Scientist - January 11th, 2025 [January 11th, 2025]
- MicroCloud Hologram Achieves Breakthrough in Quantum-Based Holographic Computing Research - StockTitan - January 11th, 2025 [January 11th, 2025]
- Rigetti Computing to Participate in Fireside Chat at 27th Annual Needham Growth Conference - GlobeNewswire - January 11th, 2025 [January 11th, 2025]
- Rigetti Computing: The Quantum Revolution Is Just Getting Started (NASDAQ:RGTI) - Seeking Alpha - January 11th, 2025 [January 11th, 2025]
- Quantum computing CEO hits back on Jensen Huang's blunt words - TheStreet - January 11th, 2025 [January 11th, 2025]
- Nvidia and quantum computers, Bitcoin seesaws, and the Trump trade: Markets news roundup - Quartz - January 11th, 2025 [January 11th, 2025]
- Veteran analyst who predicted quantum computing stocks rally goes bargain hunting - TheStreet - January 11th, 2025 [January 11th, 2025]
- D-Wave is not happy about the Nvidia CEOs thoughts on quantum computing: 'Its an egregious error' - Fast Company - January 11th, 2025 [January 11th, 2025]
- D-Wave Announces a 120% Increase in Bookings for 2024, the Sale of Its First D-Wave Advantage Processor, and an Agreement to Sell Additional Common... - January 11th, 2025 [January 11th, 2025]
- Quantum? No solace: Nvidia CEO sinks QC stocks with '20 years off' forecast - The Register - January 11th, 2025 [January 11th, 2025]
- For Quantum Companies, Tiny Expectation Shifts Can Lead to Dramatic Price Swings - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- How Yizhi Yous quantum research could revolutionize computing and STEM education - Northeastern University - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks Are Having a Rough Week. Why the Future Matters More. - Barron's - January 11th, 2025 [January 11th, 2025]
- Why Quantum Computing Inc. Stock Soared a Whopping 1,713% in 2024 - The Motley Fool - January 11th, 2025 [January 11th, 2025]
- Nvidia CEO: Quantum Computers Won't Be Very Useful for Another 20 Years - PCMag - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks Are Having a Rough Week. Investors Should Look to the Future. - Yahoo! Voices - January 11th, 2025 [January 11th, 2025]
- UConn, NORDITA, and Google Reveal Gravity As Both Friend and Foe of Quantum Technology - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- Artificial Intelligence (AI), Quantum Computing, and RoboTaxis: Here's 1 "Magnificent Seven" Stock That Has It All - The Motley Fool - January 11th, 2025 [January 11th, 2025]
- Saudi Arabia Lays Out Its Strategic Vision For The Quantum Era - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- Quantum Setback: Stocks Dive as Nvidia Sees a Long Road Ahead - Wall Street Pit - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks, Including IonQ (IONQ) and D-Wave (QBTS), Are Volatile and Mixed - Insider Monkey - January 11th, 2025 [January 11th, 2025]
- NIH explores the world of quantum sensors and how they can help medicine - Federal News Network - January 11th, 2025 [January 11th, 2025]
- Quantum Computing 2025 Is it Turning the Corner? - HPCwire - January 1st, 2025 [January 1st, 2025]
- IBM will release the largest ever quantum computer in 2025 - New Scientist - January 1st, 2025 [January 1st, 2025]
- Betting on the Quantum Buzz: Righetti, D-Wave, and QUBTs Option Explosion - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- "Impossible" quantum teleportation achieved on normal internet cables - Earth.com - January 1st, 2025 [January 1st, 2025]
- It Takes A Village: Top 10 Quantum Partnerships of 2024 - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- TQIs 2025 Predictions For The Quantum Industry - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Future outlook: The impact of quantum computing on financial services - London Daily News - January 1st, 2025 [January 1st, 2025]
- Quantum computing is finally here. But what is it? - Crain's Chicago Business - January 1st, 2025 [January 1st, 2025]