Building The Bridge To The Quantum Future With Hybrid Systems – The Next Platform
While there is a lot of hype, there is no question that quantum computers are going to revolutionize computing. But we are still in the early stages of exploring quantum development, and truly useful quantum systems are still years away. That does not mean that quantum lacks opportunities, however, and companies such as Dell and quantum startup IonQ are exploring the possibilities of hybrid systems that combine classical computer systems with quantum hardware.
IBM currently holds the record for the worlds largest superconducting quantum computer, with its Eagle processor announced last November packing in 127 quantum bits (qubits). But many experts believe that machines with many more qubits will be necessary in order to improve on the unreliability of current hardware.
Superconducting gate speeds are very fast, but youre going to need potentially 10,000 or 100,000 or even a million physical qubits to represent one logical qubit to do the necessary error correction because of low quality, said Matt Keesan, IonQs vice president for product development.
Keesan, speaking at anHPC community event hosted by Dell, said that todays quantum systems suffer greatly from noise, and so we are currently in the noisy intermediate-scale quantum (NISQ) computer era, unable yet to fully realize the power of quantum computers, because of that need for a lot more qubits to run fully fault tolerant quantum computers.
This NISQ era is projected to last for at least the next five years, until quantum systems have developed enough to be able to support qubits in the thousands.
In the meantime, researchers can still make advances by pairing current quantum systems with traditional classical computers, in a way that Keesan compares with adding a GPU to a server.
It turns out the quantum computer by itself isnt enough, he declared. Just like a GPU is more useful when paired with a regular CPU, the quantum processing unit or QPU is more useful today when paired with a classical computer.
Keesan cited some examples of problems that are amenable to this treatment. One, the Variational Quantum Eigensolver (VQE) algorithm, is used to estimate the ground state energy of small molecules. Here, the optimiser runs on a classical computer while the evaluation of that output happens in the quantum computer, and they work together back and forth iteratively.
Another, the quantum approximate optimisation algorithm (QAOA) can find approximate solutions to combinatorial optimization problems by pairing a classical pre-processor with a quantum computer. Quantum circuits can also be used as machine learning models, with the quantum circuit parameters being updated by the classical computer system and evaluated using quantum methods.
More explanation of this is available on IonQs blog, but the trick with these hybrid applications apparently lies in finding the right control points that allow the quantum and classical portions of the algorithms to effectively interact. VQE does this by creating a single quantum circuit with certain parameterized components, then using the classical optimisation algorithm to vary these parameters until the desired outcome is reached.
But this iterative process could easily be very slow, such that a VQE run might take weeks to execute round robin between a classical computer and a quantum computer, according to Keesan, unless the quantum and classical systems are somehow co-located. This is what Dell and IonQ have actually demonstrated, with an IonQ quantum system integrated with a Dell server cluster in order to run to run a hybrid workload.
This integration is perhaps easier with IonQs quantum systems because of the pathway it has taken to developing its quantum technology. Whereas some in the quantum industry use superconductivity and need the qubits to be encased in a bulky specialised refrigeration unit, IonQs approach works at room temperature. It uses trapped ions for its qubits trapped ions for its qubits suspended in a vacuum and manipulated using a laser beam, which enables it to be relatively compact.
We have announced publicly, were driving towards fully rack-mounted systems. And its important to note that systems on the cloud today, at least in our case, are room temperature systems, where the isolation is happening in a vacuum chamber, about the size of a deck of cards, Keesan explained.
Power requirements for IonQs quantum processors are also claimed to be relatively low, with a total consumption in kilowatts, So its very conceivable to put it into a commercial datacentre, with room temperature technology like were using now, Keesan added.
For organisations that might be wondering how to even get started in their quantum journey, Ken Durazzo, Dells vice president of technology research and innovation, shared what the company had learned from its quantum exploration.
One of the key ways Dell found to get started with quantum is by using simulated quantum systems, which Durazzo refers to as using virtual QPUs or vQPUs, to allow for hands-on experimentation to allow developers and engineers to become familiar with using quantum systems.
Some of the key learnings that we identified there were, how do we skill or reskill or upskill people to quickly bridge the gap between the known and the unknown in terms of quantum? Quantum computation is dramatically different than the classical computation, and getting people with hands-on experience there is a bit of a hurdle. And that hands on experimentation helps get people over the hurdle pretty quickly, Durazzo explained.
Also vital is identifying potential use cases, and Durazzo said that zoning those down to a level of smaller action-oriented types of activities is key to really understanding where a user might find a benefit in terms of quantum computation, and therefore where to place the biggest bets in terms of solving these types of issues.
Dell also decided that bringing into operation a hybrid classical-quantum system would best suit their purposes, one in which it would be possible to transit workloads between virtual and the physical QPUs to provide a simple path from experimentation to production.
All of those learning activities enabled us to build a full stack suite of things that provided us the tools that allowed us to be able to integrate seamlessly with that hybrid classical quantum system, Durazzo said.
In Dells view of a hybrid classical-quantum computer, the processing capabilities comprise both virtual QPU servers and real QPUs that deliver that quantum processing capability. This arrangement provides the user with the ability to simulate or run experiments on the virtual QPUs that will then allow them to identify where there may be opportunities or complex problems to be solved on the real QPU side.
One area that we have focused on there is the ability to provide a seamless experience that allows you to develop an application inside of one framework, Qiskit for example, and run that in a virtual QPU or a real QPU just by modifying a flag, without having to modify the application, without having to change the parameters associated with the application, Durazzo explained.
Sonika Johri, IonQs lead quantum applications researcher, gave a demonstration of a hybrid classical-quantum generative learning application. This was trained by sampling the output of a parametrized quantum circuit, which is run on a quantum computer, and updating the static parameters using a classical optimisation technique. This was run on both run on both a quantum simulator a virtual QPU as well as a real quantum computer.
That example application was run using just four qubits, and Johri disclosed that the simulator is actually faster than the quantum computer at that level.
But when you go from 4 to 40 qubits, the amount of time and the amount of memory the simulator needs will increase exponentially with the number of qubits, but for the quantum computer, it is only going to increase linearly. So at four cubits the simulator is faster than the quantum computer, but if you scale up that same example to say, 30 to 40 qubits, the quantum computer is going to be exponentially faster, she explained.
Dell has also now begun to further adapt its hybrid classical-quantum computer by adding intelligent orchestration to automate some of the provisioning and management of the quantum hardware, and further optimize operations.
We have taken that two steps further by adding machine learning into an intelligent orchestration function. And what the machine learning algorithms do is to identify the characteristics associated with the workload and then match the correct number of QPUs and the correct system, either virtual or real QPU, in order to get to the outcomes that youre looking to get to a very specific point in time, Durazzo said.
Quantum computer hardware will continue to evolve, and may even pick up pace as interest in the field (and investment) grows, but Dells Durazzo believes that the classical-quantum hybrid model it has developed is good for a few years yet.
I think that diagram actually shows the future state for a very long time for quantum of a hybrid classical-quantum system, where the interactions are very tight, the interactions are very prescriptive in the world of quantum and classical for growth together into the future, he said. As we further grow those numbers of qubits, the classical infrastructure necessary to support this quantum computation will grow as well. So, there should be a very large increase overall in the system as we start becoming more capable of solving more complex problems inside the quantum space.
Original post:
Building The Bridge To The Quantum Future With Hybrid Systems - The Next Platform
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]
- Riverlanes Quantum Error Correction Report: Defining the Path to Fault-Tolerant Computing and the MegaQuOp Milestone - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computing, Inc. Enters Final Stage of Commissioning Quantum Photonic Chip Foundry in Tempe, Arizona - Yahoo Finance - October 23rd, 2024 [October 23rd, 2024]
- Why experts are warning businesses to prepare for quantum now or face critical cyber risks when it arrives - ITPro - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computers Expected to Be Useful by 2026, Survey - IoT World Today - October 23rd, 2024 [October 23rd, 2024]
- ParTec AG and HZDR to Build AI Supercomputer Supporting Research in AI, Quantum Computing, and HPC - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Pete Shadbolt on Tackling the Challenges of Quantum Computing & Its Future Impact on Everyday Life - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- How to build a quantum computer that's actually useful - Space Daily - October 23rd, 2024 [October 23rd, 2024]
- Quantum Algorithms for Faster Pattern Matching in Genomics and Text Processing, and Data-Intensive Applications - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- 2025 Tech Trends Report: New Insights on IT Investment in AI, Quantum Computing, and Cybersecurity Published by Info-Tech Research Group - PR Newswire - October 23rd, 2024 [October 23rd, 2024]
- Next Quantum Computer Comes To Netherlands - Mirage News - October 23rd, 2024 [October 23rd, 2024]