Confused by quantum computing? Students are developing a … – University of Arizona News
By Kylianne Chadwick, NASA Space Grant Science Writing Intern, University Communications
Wednesday
This spring, "Ant-Man and the Wasp: Quantumania" premiered in movie theaters across the U.S. The movie depicts a "quantum realm" a world among subatomic particles. While the ideas in the movie differ greatly from the current scientific consensus of the quantum world, applications of quantum mechanics aren't just fantasy; physicists around the globe are applying quantum principles to create powerful quantum computers that outperform conventional computers.
Quantum computers hold the promise of revolutionizing computing. Unlike conventional computers, they take advantage of quantum-mechanical effects that seem to fly in the face of how humans typically experience the world. Because quantum computers follow an entirely different set of rules than traditional computers, they can solve certain problems exponentially faster.
University of Arizona students have developed a computer game to make complex quantum computation concepts easier to grasp. The game challenges users to arrange puzzle pieces into a shape that models a quantum computing circuit. The game was designed to teach students, and even quantum researchers, an unconventional model of quantum computation.
Ashlesha Patil a doctoral student in University of Arizona Wyant College of Optical Sciences and the university-housed, National Science Foundation-funded Center for Quantum Networks presented the puzzle project at a virtual meeting of the American Physical Society on March 22. The project was done under the mentorship of Center for Quantum Networks director Saikat Guha, who is a professor in the Wyant College of Optical Sciences, and Don Towsley, a professor at the University of Massachusetts Amherst.
Patil relates the game to tangram, a puzzle game that was invented in China in the late 1700s. This game includes seven puzzle pieces, each a particular geometric shape and size. Even with just seven pieces, there are more than 1 billion possible ways the pieces can be arranged.
"Our game is much like tangram because the players are challenged to arrange colored blocks on a grid," Patil said. "The game isn't exactly 'real' quantum computation, but rather an educational tool to teach students and even scientists an unconventional, measurement-based way of mapping quantum circuits."
Patil and her teammate Yosef Jacobson, an undergraduate double majoring in computer science and game design and development, have almost wrapped up the development phase of the computer game. They are awaiting minor cosmetic changes before the game will be tested by a broad range of users. The current version is designed to educate students in middle school and high school, and Patil believes that the game could help prepare the upcoming generation to build and optimize quantum computers.
"The quantum information industry is growing and needs a workforce that is trained in quantum theory," Patil said, adding that quantum computers have the potential to model atoms and molecules in ways that are immensely useful for several applications, including new types of drugs, batteries, fertilizers and energy sources.
"Even if a player doesn't end up in a career related to quantum computation, we hope this game might inspire them to go into a STEM-related field," Patil said. "Our hope is that this game could generate excitement about science, in general, with young students."
Conventional computers rely on electrical charges to encode information typically represented by ones and zeroes, which in turn encode bits. Quantum computers, on the other hand, use quantum bits, or "qubits," which can assume a state of both zero and one simultaneously until the state is actually measured, a property called superposition. Because of this, groups of qubits can represent vastly more combinations than classic computer bits.
The states of bits and qubits can be changed by hardware called "gates." All digital devices use gates in their computer circuits.
"A classical computer uses gates, such as the NOT gate, which converts a zero bit into a one bit," Patil explained. "Similarly, there are quantum gates that act on single or multiple qubits simultaneously to change their state, which are represented by the puzzle pieces in our game."
Whether players are aware of it or not, they are modeling a quantum circuit as they drag and drop colored blocks quantum gates onto the game grid, with each horizontal line on the grid representing a qubit. Each round, a random quantum circuit is generated, and the user is prompted to arrange the gates for that quantum circuit while following specific rules. These rules are governed by a measurement-based model of quantum computation, abbreviated as MBQC.
"One way to implement this game is to let students have fun with the game first, then explain what they actually accomplished later," Patil said. "In this way, even young students can gain a more intuitive understanding of the model without having to know all the technical details."
The goal of the game, which is played by one player at a time, is to cover the least possible amount of area when aligning the puzzle blocks or quantum gates. If the player successfully solves the circuit, they are given a score based on how "tightly" they were able to pack the blocks and therefore solve the puzzle.
The game is based off the MBQC model, which takes into account another quirk of the quantum world that is extremely difficult to reconcile with our everyday experience: entanglement.
"Entanglement is a quantum phenomenon in which particles are 'connected,' even across vast distances," Patil said. "This means that a certain physical property of the particles is completely correlated so that if you measure the physical property of one particle, you can determine the property of the other particle."
To perform computation using the MBQC model, researchers initially prepare multiple qubits that are already locked in an entangled state. They then work backward by using the measurements, or whether the qubit ends up as a zero or one, on the entangled qubits to implement gates.
"MBQC is not a very intuitive model because it differs greatly from the way we understand classical computers," Patil said. "Even scientists in the quantum research community are less familiar with it, and that's why we developed this game."
Conventionally, researchers focus on gates when depicting quantum computation in a different model called the circuit model. This method closely relates to classical computers.
"Our game takes the intuitive part of a classic circuit model gates and maps them into puzzle blocks that signify measurements in the MBQC model," Patil said. "This reduces some of the confusion that comes with understanding MBQC measurements, making the model easier to grasp."
Like the centuries-old tangram, the student-developed computer game holds numerous possibilities.
"An optimal mapping of a quantum circuit to measurement-based quantum computation is an open problem that has not been completely solved," Patil said. "We're still figuring out the best way to 'pack' the puzzle blocks the most efficient way for real quantum circuits. Especially when there are many qubits, things get complicated."
The game project was funded by an engineering workforce development fellowship that Patil received from the Center for Quantum Networks, or CQN. UArizona was awarded $26 million under the National Science Foundation's Engineering Research Center program in September 2020 to establish the center, which is also supported by the Department of Energy.
CQN is laying the technical foundations of the first U.S.-based quantum network that can distribute quantum information at high speeds, over long distances. Along with these technological goals, the center prioritizes community-based outreach to students, offering them opportunities in quantum research.
"Our outreach focuses mostly on the lower income areas of Arizona where the students have never met scientists before," Patil said. "As you can imagine, the students get very excited to see the scientists from CQN."
Once the computer game is finished, Patil hopes it will be included in outreach efforts and eventually reach students in classrooms around the nation.
See the original post here:
Confused by quantum computing? Students are developing a ... - University of Arizona News
- From sand to superposition: A key step toward a powerful silicon quantum computer - Phys.org - November 28th, 2024 [November 28th, 2024]
- Could Rigetti Computing Become the Next Nvidia? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Computing at the Edge of Reality - Sponsor Content - Google - The Atlantic - November 28th, 2024 [November 28th, 2024]
- Are IONQ, FORM, and IBM Stocks Buys Ahead of the Quantum Revolution? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Telefonica Germany and AWS Collaborate to Test Quantum Technologies for Mobile Networks and 6G Development - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- Quantum Thanksgiving -- Why You Should Give Thanks (ThanQs?) For Quantum Mechanics During This Season of Gratitude - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- IonQ to Highlight Recent Quantum Innovations in Live Webinar, "IonQ's Full-Stack Quantum Innovation" - Business Wire - November 28th, 2024 [November 28th, 2024]
- Nobel Prize-Winning AI Breakthrough Paves the Way for Quantum Chemistry - SciTechDaily - November 28th, 2024 [November 28th, 2024]
- The Rise of Quantum Technology: Key Startups and Companies - Bizz Buzz - November 28th, 2024 [November 28th, 2024]
- Quantum Computing: Navigating the path to Q-Day through standards - TechNative - November 28th, 2024 [November 28th, 2024]
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]