Creating the Heart of a Quantum Computer: Developing Qubits – SciTechDaily
By Shannon Brescher Shea, U.S. Department of EnergyJanuary 3, 2022
A computer is suspended from the ceiling. Delicate lines and loops of silvery wires and tubes connect gold-colored platforms. It seems to belong in a science-fiction movie, perhaps a steam-punk cousin of HAL in 2001: A Space Odyssey. But as the makers of that 1968 movie imagined computers the size of a spaceship, this technology would have never crossed their minds a quantum computer.
Quantum computers have the potential to solve problems that conventional computers cant. Conventional computer chips can only process so much information at one time and were coming very close to reaching their physical limits. In contrast, the unique properties of materials for quantum computing have the potential to process more information much faster.
These advances could revolutionize certain areas of scientific research. Identifying materials with specific characteristics, understanding photosynthesis, and discovering new medicines all require massive amounts of calculations. In theory, quantum computing could solve these problems faster and more efficiently. Quantum computing could also open up possibilities we never even considered. Its like a microwave oven versus a conventional oven different technologies with different purposes.
But were not there yet. So far, one company has claimed its quantum computer can complete a specific calculation faster than the worlds fastest conventional supercomputers. Scientists routinely using quantum computers to answer scientific questions is a long way off.
To use quantum computers on a large scale, we need to improve the technology at their heart qubits. Qubits are the quantum version of conventional computers most basic form of information, bits. The DOEs Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.
DOEs Lawrence Berkeley National Laboratory is using a sophisticated cooling system to keep qubits the heart of quantum computers cold enough for scientists to study them for use in quantum computers. Credit: Image courtesy of Lawrence Berkeley National Laboratory
At the atomic scale, physics gets very weird. Electrons, atoms, and other quantum particles interact with each other differently than ordinary objects. In certain materials, we can harness these strange behaviors. Several of these properties particularly superposition and entanglement can be extremely useful in computing technology.
The principle of superposition is the idea that a qubit can be in multiple states at once. With traditional bits, you only have two options: 1 or 0. These binary numbers describe all of the information in any computer. Qubits are more complicated.
Imagine a pot with water in it. When you have water in a pot with a top on it, you dont know if its boiling or not. Real water is either boiling or not; looking at it doesnt change its state. But if the pot was in the quantum realm, the water (representing a quantum particle) could both be boiling and not boiling at the same time or any linear superposition of these two states. If you took the lid off of that quantum pot, the water would immediately be one state or the other. The measurement forces the quantum particle (or water) into a specific observable state.
Entanglement is when qubits have a relationship to each other that prevents them from acting independently. It happens when a quantum particle has a state (such as spin or electric charge) thats linked to another quantum particles state. This relationship persists even when the particles are physically far apart, even far beyond atomic distances.
These properties allow quantum computers to process more information than conventional bits that can only be in a single state and only act independently from each other.
But to get any of these great properties, you need to have fine control over a materials electrons or other quantum particles. In some ways, this isnt so different from conventional computers. Whether electrons move or not through a conventional transistor determines the bits value, making it either 1 or 0.
Rather than simply switching electron flow on or off, qubits require control over tricky things like electron spin. To create a qubit, scientists have to find a spot in a material where they can access and control these quantum properties. Once they access them, they can then use light or magnetic fields to create superposition, entanglement, and other properties.
In many materials, scientists do this by manipulating the spin of individual electrons. Electron spin is similar to the spin of a top; it has a direction, angle, and momentum. Each electrons spin is either up or down. But as a quantum mechanical property, spin can also exist in a combination of up and down. To influence electron spin, scientists apply microwaves (similar to the ones in your microwave oven) and magnets. The magnets and microwaves together allow scientists to control the qubit.
Since the 1990s, scientists have been able to gain better and better control over electron spin. Thats allowed them to access quantum states and manipulate quantum information more than ever before.
To see where thats gone today, its remarkable, said David Awschalom, a quantum physicist at DOEs Argonne National Laboratory and the University of Chicago as well as Director of the Chicago Quantum Exchange.
Whether they use electron spin or another approach, all qubits face major challenges before we can scale them up. Two of the biggest ones are coherence time and error correction.
When you run a computer, you need to be able to create and store a piece of information, leave it alone, and then come back later to retrieve it. However, if the system that holds the information changes on its own, its useless for computing. Unfortunately, qubits are sensitive to the environment around them and dont maintain their state for very long.
Right now, quantum systems are subject to a lot of noise, things that cause them to have a low coherence time (the time they can maintain their condition) or produce errors. Making sure that you get the right answer all of the time is one of the biggest hurdles in quantum computing, said Danna Freedman, an associate professor in chemistry at Northwestern University.
Even if you can reduce that noise, there will still be errors. We will have to build technology that is able to do error correction before we are able to make a big difference with quantum computing, said Giulia Galli, a quantum chemist and physicist at DOEs Argonne National Laboratory and the University of Chicago.
The more qubits you have in play, the more these problems multiply. While todays most powerful quantum computers have about 50 qubits, its likely that they will need hundreds or thousands to solve the problems that we want them to.
The jury is still out on which qubit technology will be the best. No real winner has been identified, said Galli. [Different ones] may have their place for different applications. In addition to computing, different quantum materials may be useful for quantum sensing or networked quantum communications.
To help move qubits forward, DOEs Office of Science is supporting research on a number of different technologies. To realize quantum computings enormous scientific potential, we need to reimagine quantum R&D by simultaneously exploring a range of possible solutions, said Irfan Siddiqi, a quantum physicist at the DOE Lawrence Berkeley National Laboratory and the University of California, Berkeley.
Superconducting Qubits
Superconducting qubits are currently the most advanced qubit technology. Most existing quantum computers use superconducting qubits, including the one that beat the worlds fastest supercomputer. They use metal-insulator-metal sandwiches called Josephson junctions. To turn these materials into superconductors materials that electricity can run through with no loss scientists lower them to extremely cold temperatures. Among other things, pairs of electrons coherently move through the material as if theyre single particles. This movement makes the quantum states more long-lived than in conventional materials.
To scale up superconducting qubits, Siddiqi and his colleagues are studying how to build them even better with support from the Office of Science. His team has examined how to make improvements to a Josephson junction, a thin insulating barrier between two superconductors in the qubit. By affecting how electrons flow, this barrier makes it possible to control electrons energy levels. Making this junction as consistent and small as possible can increase the qubits coherence time. In one paper on these junctions, Siddiqis team provides a recipe to build an eight-qubit quantum processor, complete with experimental ingredients and step-by-step instructions.
Qubits Using Defects
Defects are spaces where atoms are missing or misplaced in a materials structure. These spaces change how electrons move in the materials. In certain quantum materials, these spaces trap electrons, allowing researchers to access and control their spins. Unlike superconductors, these qubits dont always need to be at ultra-low temperatures. They have the potential to have long coherence times and be manufactured at scale.
While diamonds are usually valued for their lack of imperfections, their defects are actually quite useful for qubits. Adding a nitrogen atom to a place where there would normally be a carbon atom in diamonds creates whats called a nitrogen-vacancy center. Researchers using the Center for Functional Nanomaterials, a DOE Office of Science user facility, found a way to create a stencil just two nanometers long to create these defect patterns. This spacing helped increase these qubits coherence time and made it easier to entangle them.
But useful defects arent limited to diamonds. Diamonds are expensive, small, and hard to control. Aluminum nitride and silicon carbide are cheaper, easier to use, and already common in everyday electronics. Galli and her team used theory to predict how to physically strain aluminum nitride in just the right way to create electron states for qubits. As nitrogen vacancies occur naturally in aluminum nitride, scientists should be able to control electron spin in it just as they do in diamonds. Another option, silicon carbide, is already used in LED lights, high-powered electronics, and electronic displays. Awschaloms team found that certain defects in silicon carbide have coherence times comparable to or longer than those in nitrogen-vacancy centers in diamonds. In complementary work, Gallis group developed theoretical models explaining the longer coherence times.
Based on theoretical work, we began to examine these materials at the atomic scale. We found that the quantum states were always there, but no one had looked for them, said Awschalom. Their presence and robust behavior in these materials were unexpected. We imagined that their quantum properties would be short-lived due to interactions with nearby nuclear spins. Since then, his team has embedded these qubits in commercial electronic wafers and found that they do surprisingly well. This can allow them to connect the qubits with electronics.
Materials by Design
While some scientists are investigating how to use existing materials, others are taking a different tack designing materials from scratch. This approach builds custom materials molecule by molecule. By customizing metals, the molecules or ions bound to metals, and the surrounding environment, scientists can potentially control quantum states at the level of a single particle.
When youre talking about both understanding and optimizing the properties of a qubit, knowing that every atom in a quantum system is exactly where you want it is very important, said Freedman.
With this approach, scientists can limit the amount of nuclear spin (the spin of the nucleus of an atom) in the qubits environment. A lot of atoms that contain nuclear spin cause magnetic noise that makes it hard to maintain and control electron spin. That reduces the qubits coherence time. Freedman and her team developed an environment that had very little nuclear spin. By testing different combinations of solvents, temperatures, and ions/molecules attached to the metal, they achieved a 1 millisecond coherence time in a molecule that contains the metal vanadium. That was a much longer coherence time than anyone had achieved in a molecule before. While previous molecular qubits had coherence times that were five times shorter than diamond nitrogen-vacancy centers times, this matched coherence times in diamonds.
That was genuinely shocking to me because I thought molecules would necessarily be the underdogs in this game, said Freedman. [It] opens up a gigantic space for us to play in.
The surprises in quantum just keep coming. Awschalom compared our present-day situation to the 1950s when scientists were exploring the potential of transistors. At the time, transistors were less than half an inch long. Now laptops have billions of them. Quantum computing stands in a similar place.
The overall idea that we could completely transform the way that computation is done and the way nature is studied by doing quantum simulation is really very exciting, said Galli. Our fundamental way of looking at materials, based on quantum simulations, can finally be useful to develop technologically relevant devices and materials.
Read the rest here:
Creating the Heart of a Quantum Computer: Developing Qubits - SciTechDaily
- Scientists use quantum machine learning to create semiconductors for the first time and it could transform how chips are made - Live Science - July 30th, 2025 [July 30th, 2025]
- IonQ Just Nabbed a Former JPMorgan Research Leader. How Should You Play the Quantum Computing Stock Here? - Yahoo Finance - July 30th, 2025 [July 30th, 2025]
- Quantum computing occurs naturally in the human brain, study finds - The Brighter Side of News - July 30th, 2025 [July 30th, 2025]
- Xanadu Advances TFLN Photonic Chips with HyperLight for Quantum Hardware Scaling - HPCwire - July 30th, 2025 [July 30th, 2025]
- D-Wave Quantum Announces Strategic Development Initiative for Advanced Cryogenic Packaging - TechPowerUp - July 30th, 2025 [July 30th, 2025]
- Prepping for the quantum threat requires a phased approach to crypto agility - csoonline.com - July 30th, 2025 [July 30th, 2025]
- Navigating The Quantum Revolution In A Year Of Transformation - Semiconductor Engineering - July 30th, 2025 [July 30th, 2025]
- QUBT or RGTI: Which Quantum Stock Offers the Better Upside Now? - TradingView - July 30th, 2025 [July 30th, 2025]
- Entanglement-induced provable and robust quantum learning advantages - Nature - July 30th, 2025 [July 30th, 2025]
- Researchers zero in on a new material for quantum information storage - anl.gov - July 30th, 2025 [July 30th, 2025]
- The best ways to play the emergence of quantum computing, according to Rosenblatt - CNBC - July 30th, 2025 [July 30th, 2025]
- Quantum Could be Threat And Shield For Tomorrows Warfighters, Strategists Suggest - The Quantum Insider - July 30th, 2025 [July 30th, 2025]
- QBTS or IONQ? Rosenblatt Picks the Better Quantum Computing Stock - TipRanks - July 30th, 2025 [July 30th, 2025]
- IonQ's Global Push: Will Asia Deals Spark the Next Growth Wave? - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- Variational Eigensolver Accurately Simulates Lattice Gauge Theory Ground States and String Breaking - Quantum Zeitgeist - July 28th, 2025 [July 28th, 2025]
- 'The era of quantum supremacy is just around the corner,' IonQ CEO says - CNBC - July 28th, 2025 [July 28th, 2025]
- Illinois is trying to get Canadian quantum firms to scale in Chicago - The Logic - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Nasdaq - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Why This Startup Is Building a $50 Million Computer - Inc.com - July 27th, 2025 [July 27th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Globe and Mail - July 27th, 2025 [July 27th, 2025]
- Could Metasurfaces be The Next Quantum Information Processors? - The Quantum Insider - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - Yahoo Finance - July 27th, 2025 [July 27th, 2025]
- IonQ CEO drops bold call on quantum computings tipping point - TheStreet - July 27th, 2025 [July 27th, 2025]
- Worlds most powerful quantum computer to be invested in by Denmark - IceNews - Daily News - July 27th, 2025 [July 27th, 2025]
- Buy D-Wave Quantum Stock, Analyst Says. Its a Compelling Investment Opportunity. - Barron's - July 24th, 2025 [July 24th, 2025]
- Pacific Northwest tech pioneers team up in quantum realms and on the space frontier - GeekWire - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - MSN - July 24th, 2025 [July 24th, 2025]
- Can Unisys Capitalize Early With Looming Quantum Threats? - TradingView - July 24th, 2025 [July 24th, 2025]
- Quantum Beach 2025 to Spotlight Floridas Role in the Global Quantum Economy - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- EXPLAINER - What is quantum computing, and why does it matter? - AnewZ - July 24th, 2025 [July 24th, 2025]
- D-Wave or IonQ: Which Quantum Stock Has More Upside in 2025? - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Infleqtion to Build Neutral Atom Quantum Computer in Illinois, Backed by $50 Million Partnership - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- The worlds most powerful quantum computer is coming to Denmark - Evertiq - July 24th, 2025 [July 24th, 2025]
- Microsoft and Atom Computing to build "worlds most powerful quantum computer" in Denmark - Data Center Dynamics - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Quantum Stocks Slide: Is the Hype-Fueled Rally Over? - 24/7 Wall St. - July 22nd, 2025 [July 22nd, 2025]
- Apply to host an event at Qiskit Fall Fest 2025! - IBM - July 22nd, 2025 [July 22nd, 2025]
- 'NSF was there at the start' an experimental quantum chip may yield more robust qubits - National Science Foundation (.gov) - July 22nd, 2025 [July 22nd, 2025]
- Want to Invest in Quantum Computing? 4 Stocks That Are Great Buys Right Now - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Will IonQ's Hardware Push Drive the Next Wave of Quantum Monetization? - TradingView - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - AOL.com - July 22nd, 2025 [July 22nd, 2025]
- JPMorgan Overhauls Quantum Team, Rehires Former Exec - IoT World Today - July 22nd, 2025 [July 22nd, 2025]
- 54-qubit superconducting quantum processor from IQM now avaialable on Amazon Braket - Scientific Computing World - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - MSN - July 22nd, 2025 [July 22nd, 2025]
- New trapped-atom qubit technology translates to industry-ready quantum computing product - College of Engineering | University of Wisconsin-Madison - July 22nd, 2025 [July 22nd, 2025]
- D-Wave Quantum (QBTS) Capitalizes on Annealing Advantage to Extend Bullish Outlook - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- Google Research Award Calls For Scientists to Probe Quantum Effects in The Brain - The Quantum Insider - July 22nd, 2025 [July 22nd, 2025]
- Quantum Computing Threatens Blockchains, Driving Development Of Resistant Systems - Quantum Zeitgeist - July 22nd, 2025 [July 22nd, 2025]
- Quantum Computing: What We Know Ahead Of Q2 (NASDAQ:QUBT) - Seeking Alpha - July 22nd, 2025 [July 22nd, 2025]
- SpinQ's Quantum Computing Breakthrough: 100-Qubit Machine by Year-End - News and Statistics - IndexBox - July 22nd, 2025 [July 22nd, 2025]
- QED-C holds second annual Quantum Technologies Showcase on Capitol Hill - Scientific Computing World - July 22nd, 2025 [July 22nd, 2025]
- The Quantum Bitcoin Summit: A Grounded Look At The Issues - Bitcoin Magazine - July 22nd, 2025 [July 22nd, 2025]
- Why Shares of Rigetti Computing Have Blasted 41% Higher This Week - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Quantum computing will soon crack todays encryption methods.Here are 3 ways businesses can prepare - The World Economic Forum - July 22nd, 2025 [July 22nd, 2025]
- 7M Bitcoin at Risk as Quantum Computing Set to Break Crypto in 3 Years | Interview - Cryptonews - July 22nd, 2025 [July 22nd, 2025]
- QED-C Holds Second Annual Quantum Technologies Showcase on Capitol Hill - The Quantum Insider - July 22nd, 2025 [July 22nd, 2025]
- PsiQuantums Chicago quantum computer to begin operations in 2028 - Bloomberg - Investing.com - July 22nd, 2025 [July 22nd, 2025]
- Chicagos $1 Billion Quantum Computer Set to Go Live in 2028 - Bloomberg.com - July 22nd, 2025 [July 22nd, 2025]
- Are We in a Quantum Computing Bubble? - MSN - July 20th, 2025 [July 20th, 2025]
- Quantum computing is so fire No, seriously. BofA says it could be humanity's biggest breakthrough since the discovery of fire - Fortune - July 20th, 2025 [July 20th, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Bitcoin News: How Quantum Computing Threatens the Math Behind Satoshi Nakamoto's Creation - CoinDesk - July 20th, 2025 [July 20th, 2025]
- Should You Invest $1,000 in Quantum Computing Competitor Rigetti Computing? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Google solves septillionyear problem This quantum chip is the end of computers - El Diario 24 - July 20th, 2025 [July 20th, 2025]
- Researchers Push for Open-Source Quantum Tools to Break Critical Industry Bottlenecks - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Quantum Leap or Overpriced Hype? D-Wave's $400M Raise and the Future of Quantum Computing - AInvest - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Globe and Mail - July 20th, 2025 [July 20th, 2025]
- Quantum computing edges closer to biotech reality in Moderna-IBM pact - R&D World - July 20th, 2025 [July 20th, 2025]
- Scientists achieve 'magic state' quantum computing breakthrough 20 years in the making quantum computers can never be truly useful without it -... - July 20th, 2025 [July 20th, 2025]
- Guest Post -- Practical Quantum Advantage in the Context of Quantum AI: Rise of the Hybrid Systems - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Scientists make 'magic state' breakthrough after 20 years without it, quantum computers can never be truly useful - Live Science - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- EIFO and the Novo Nordisk Foundation Acquire the Worlds Most Powerful Quantum Computer - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Israel and US to forge $200m tech hub for AI and quantum science development - The Times of Israel - July 18th, 2025 [July 18th, 2025]
- Quantum code breaking? You'd get further with an 8-bit computer, an abacus, and a dog - theregister.com - July 18th, 2025 [July 18th, 2025]
- Is quantum computing the next big thing in stocks? - TheStreet - July 18th, 2025 [July 18th, 2025]
- What to do while pursuing the promise of quantum computing - Brookings - July 18th, 2025 [July 18th, 2025]