Creating the Heart of a Quantum Computer: Developing Qubits – SciTechDaily
By Shannon Brescher Shea, U.S. Department of EnergyJanuary 3, 2022
A computer is suspended from the ceiling. Delicate lines and loops of silvery wires and tubes connect gold-colored platforms. It seems to belong in a science-fiction movie, perhaps a steam-punk cousin of HAL in 2001: A Space Odyssey. But as the makers of that 1968 movie imagined computers the size of a spaceship, this technology would have never crossed their minds a quantum computer.
Quantum computers have the potential to solve problems that conventional computers cant. Conventional computer chips can only process so much information at one time and were coming very close to reaching their physical limits. In contrast, the unique properties of materials for quantum computing have the potential to process more information much faster.
These advances could revolutionize certain areas of scientific research. Identifying materials with specific characteristics, understanding photosynthesis, and discovering new medicines all require massive amounts of calculations. In theory, quantum computing could solve these problems faster and more efficiently. Quantum computing could also open up possibilities we never even considered. Its like a microwave oven versus a conventional oven different technologies with different purposes.
But were not there yet. So far, one company has claimed its quantum computer can complete a specific calculation faster than the worlds fastest conventional supercomputers. Scientists routinely using quantum computers to answer scientific questions is a long way off.
To use quantum computers on a large scale, we need to improve the technology at their heart qubits. Qubits are the quantum version of conventional computers most basic form of information, bits. The DOEs Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.
DOEs Lawrence Berkeley National Laboratory is using a sophisticated cooling system to keep qubits the heart of quantum computers cold enough for scientists to study them for use in quantum computers. Credit: Image courtesy of Lawrence Berkeley National Laboratory
At the atomic scale, physics gets very weird. Electrons, atoms, and other quantum particles interact with each other differently than ordinary objects. In certain materials, we can harness these strange behaviors. Several of these properties particularly superposition and entanglement can be extremely useful in computing technology.
The principle of superposition is the idea that a qubit can be in multiple states at once. With traditional bits, you only have two options: 1 or 0. These binary numbers describe all of the information in any computer. Qubits are more complicated.
Imagine a pot with water in it. When you have water in a pot with a top on it, you dont know if its boiling or not. Real water is either boiling or not; looking at it doesnt change its state. But if the pot was in the quantum realm, the water (representing a quantum particle) could both be boiling and not boiling at the same time or any linear superposition of these two states. If you took the lid off of that quantum pot, the water would immediately be one state or the other. The measurement forces the quantum particle (or water) into a specific observable state.
Entanglement is when qubits have a relationship to each other that prevents them from acting independently. It happens when a quantum particle has a state (such as spin or electric charge) thats linked to another quantum particles state. This relationship persists even when the particles are physically far apart, even far beyond atomic distances.
These properties allow quantum computers to process more information than conventional bits that can only be in a single state and only act independently from each other.
But to get any of these great properties, you need to have fine control over a materials electrons or other quantum particles. In some ways, this isnt so different from conventional computers. Whether electrons move or not through a conventional transistor determines the bits value, making it either 1 or 0.
Rather than simply switching electron flow on or off, qubits require control over tricky things like electron spin. To create a qubit, scientists have to find a spot in a material where they can access and control these quantum properties. Once they access them, they can then use light or magnetic fields to create superposition, entanglement, and other properties.
In many materials, scientists do this by manipulating the spin of individual electrons. Electron spin is similar to the spin of a top; it has a direction, angle, and momentum. Each electrons spin is either up or down. But as a quantum mechanical property, spin can also exist in a combination of up and down. To influence electron spin, scientists apply microwaves (similar to the ones in your microwave oven) and magnets. The magnets and microwaves together allow scientists to control the qubit.
Since the 1990s, scientists have been able to gain better and better control over electron spin. Thats allowed them to access quantum states and manipulate quantum information more than ever before.
To see where thats gone today, its remarkable, said David Awschalom, a quantum physicist at DOEs Argonne National Laboratory and the University of Chicago as well as Director of the Chicago Quantum Exchange.
Whether they use electron spin or another approach, all qubits face major challenges before we can scale them up. Two of the biggest ones are coherence time and error correction.
When you run a computer, you need to be able to create and store a piece of information, leave it alone, and then come back later to retrieve it. However, if the system that holds the information changes on its own, its useless for computing. Unfortunately, qubits are sensitive to the environment around them and dont maintain their state for very long.
Right now, quantum systems are subject to a lot of noise, things that cause them to have a low coherence time (the time they can maintain their condition) or produce errors. Making sure that you get the right answer all of the time is one of the biggest hurdles in quantum computing, said Danna Freedman, an associate professor in chemistry at Northwestern University.
Even if you can reduce that noise, there will still be errors. We will have to build technology that is able to do error correction before we are able to make a big difference with quantum computing, said Giulia Galli, a quantum chemist and physicist at DOEs Argonne National Laboratory and the University of Chicago.
The more qubits you have in play, the more these problems multiply. While todays most powerful quantum computers have about 50 qubits, its likely that they will need hundreds or thousands to solve the problems that we want them to.
The jury is still out on which qubit technology will be the best. No real winner has been identified, said Galli. [Different ones] may have their place for different applications. In addition to computing, different quantum materials may be useful for quantum sensing or networked quantum communications.
To help move qubits forward, DOEs Office of Science is supporting research on a number of different technologies. To realize quantum computings enormous scientific potential, we need to reimagine quantum R&D by simultaneously exploring a range of possible solutions, said Irfan Siddiqi, a quantum physicist at the DOE Lawrence Berkeley National Laboratory and the University of California, Berkeley.
Superconducting Qubits
Superconducting qubits are currently the most advanced qubit technology. Most existing quantum computers use superconducting qubits, including the one that beat the worlds fastest supercomputer. They use metal-insulator-metal sandwiches called Josephson junctions. To turn these materials into superconductors materials that electricity can run through with no loss scientists lower them to extremely cold temperatures. Among other things, pairs of electrons coherently move through the material as if theyre single particles. This movement makes the quantum states more long-lived than in conventional materials.
To scale up superconducting qubits, Siddiqi and his colleagues are studying how to build them even better with support from the Office of Science. His team has examined how to make improvements to a Josephson junction, a thin insulating barrier between two superconductors in the qubit. By affecting how electrons flow, this barrier makes it possible to control electrons energy levels. Making this junction as consistent and small as possible can increase the qubits coherence time. In one paper on these junctions, Siddiqis team provides a recipe to build an eight-qubit quantum processor, complete with experimental ingredients and step-by-step instructions.
Qubits Using Defects
Defects are spaces where atoms are missing or misplaced in a materials structure. These spaces change how electrons move in the materials. In certain quantum materials, these spaces trap electrons, allowing researchers to access and control their spins. Unlike superconductors, these qubits dont always need to be at ultra-low temperatures. They have the potential to have long coherence times and be manufactured at scale.
While diamonds are usually valued for their lack of imperfections, their defects are actually quite useful for qubits. Adding a nitrogen atom to a place where there would normally be a carbon atom in diamonds creates whats called a nitrogen-vacancy center. Researchers using the Center for Functional Nanomaterials, a DOE Office of Science user facility, found a way to create a stencil just two nanometers long to create these defect patterns. This spacing helped increase these qubits coherence time and made it easier to entangle them.
But useful defects arent limited to diamonds. Diamonds are expensive, small, and hard to control. Aluminum nitride and silicon carbide are cheaper, easier to use, and already common in everyday electronics. Galli and her team used theory to predict how to physically strain aluminum nitride in just the right way to create electron states for qubits. As nitrogen vacancies occur naturally in aluminum nitride, scientists should be able to control electron spin in it just as they do in diamonds. Another option, silicon carbide, is already used in LED lights, high-powered electronics, and electronic displays. Awschaloms team found that certain defects in silicon carbide have coherence times comparable to or longer than those in nitrogen-vacancy centers in diamonds. In complementary work, Gallis group developed theoretical models explaining the longer coherence times.
Based on theoretical work, we began to examine these materials at the atomic scale. We found that the quantum states were always there, but no one had looked for them, said Awschalom. Their presence and robust behavior in these materials were unexpected. We imagined that their quantum properties would be short-lived due to interactions with nearby nuclear spins. Since then, his team has embedded these qubits in commercial electronic wafers and found that they do surprisingly well. This can allow them to connect the qubits with electronics.
Materials by Design
While some scientists are investigating how to use existing materials, others are taking a different tack designing materials from scratch. This approach builds custom materials molecule by molecule. By customizing metals, the molecules or ions bound to metals, and the surrounding environment, scientists can potentially control quantum states at the level of a single particle.
When youre talking about both understanding and optimizing the properties of a qubit, knowing that every atom in a quantum system is exactly where you want it is very important, said Freedman.
With this approach, scientists can limit the amount of nuclear spin (the spin of the nucleus of an atom) in the qubits environment. A lot of atoms that contain nuclear spin cause magnetic noise that makes it hard to maintain and control electron spin. That reduces the qubits coherence time. Freedman and her team developed an environment that had very little nuclear spin. By testing different combinations of solvents, temperatures, and ions/molecules attached to the metal, they achieved a 1 millisecond coherence time in a molecule that contains the metal vanadium. That was a much longer coherence time than anyone had achieved in a molecule before. While previous molecular qubits had coherence times that were five times shorter than diamond nitrogen-vacancy centers times, this matched coherence times in diamonds.
That was genuinely shocking to me because I thought molecules would necessarily be the underdogs in this game, said Freedman. [It] opens up a gigantic space for us to play in.
The surprises in quantum just keep coming. Awschalom compared our present-day situation to the 1950s when scientists were exploring the potential of transistors. At the time, transistors were less than half an inch long. Now laptops have billions of them. Quantum computing stands in a similar place.
The overall idea that we could completely transform the way that computation is done and the way nature is studied by doing quantum simulation is really very exciting, said Galli. Our fundamental way of looking at materials, based on quantum simulations, can finally be useful to develop technologically relevant devices and materials.
Read the rest here:
Creating the Heart of a Quantum Computer: Developing Qubits - SciTechDaily
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]
- Riverlanes Quantum Error Correction Report: Defining the Path to Fault-Tolerant Computing and the MegaQuOp Milestone - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computing, Inc. Enters Final Stage of Commissioning Quantum Photonic Chip Foundry in Tempe, Arizona - Yahoo Finance - October 23rd, 2024 [October 23rd, 2024]
- Why experts are warning businesses to prepare for quantum now or face critical cyber risks when it arrives - ITPro - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computers Expected to Be Useful by 2026, Survey - IoT World Today - October 23rd, 2024 [October 23rd, 2024]
- ParTec AG and HZDR to Build AI Supercomputer Supporting Research in AI, Quantum Computing, and HPC - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Pete Shadbolt on Tackling the Challenges of Quantum Computing & Its Future Impact on Everyday Life - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- How to build a quantum computer that's actually useful - Space Daily - October 23rd, 2024 [October 23rd, 2024]
- Quantum Algorithms for Faster Pattern Matching in Genomics and Text Processing, and Data-Intensive Applications - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- 2025 Tech Trends Report: New Insights on IT Investment in AI, Quantum Computing, and Cybersecurity Published by Info-Tech Research Group - PR Newswire - October 23rd, 2024 [October 23rd, 2024]
- Next Quantum Computer Comes To Netherlands - Mirage News - October 23rd, 2024 [October 23rd, 2024]