Elderly care? Bring in the robots! – Modern Diplomacy
What is quantum computing? Why do we need quantum computing? According to Moores law (The complexity of a microcircuit, measured for example by the number of transistors per chip, doubles every 18 months and hence quadruples every 3 years), the density of transistors per area unit on a computing chip doubles every year and a half, which poses two main problems for traditional computers. Firstly, as to computation, high-density transistors will face the problem of power consumption and thermal effects. Secondly, the reduction in size will cause the failure of the classic theory of transistors and their performance will deviate from the original design.
Both of these problems will limit the further shrinkage of transistors, thus putting an end to Moores law. However, although the traditional computer develops until the end of Moores law, it is still unable to cope with many problems that need to be solved. Let us say we calculate the fundamental state energy of N coupled two-level systems, since the number of unknowns will be proportional to 2^N. The current simulation time required for IBMs supercomputer is 2.5 days for a specific computation on Googles 53-qubit quantum computer, which takes about 200 seconds. Qubit is the contraction of quantum bit, the term coined by Benjamin Schumacher to denote the quantum bit, i.e. the basic unit of quantum information.
As the number of qubits continues to increase, conventional computers will soon reach a bottleneck. However, almost all conventional computations involving quantum mechanics face the same problems. Hence many researchers started thinking about how to use the quantum properties themselves as computational resources as early as 1970, which was then summarised by Richard Feynman in 1982.
Hence what advantages do qubits have over traditional computing? The most surprising is none other than the properties of quantum superposition and quantum entanglement. Quantum superposition is a non-classical state that contrasts with empirical intuition and the metaphor is Schrdingers Cat that is both alive and dead.
The superposition state, however, is a real state for qubits on microscopic or mesoscopic scales (spatial scales, viewpoints and the like that are intermediate between macroscopic and microscopic scales). Qubits can be found in the superposition of two characteristic quantum states, and this superposition state is a non-classical state in which being and non-being coexist in the quantum world. In this state, the qubit is neither 0 nor 1, but it is not in a state in which both sides (0 and 1) are uncertain, but rather with equal probability, like a coin before it lands on the palm of the hand.
While in visible nature it is possible to observe a phenomenon without perceptibly influencing it by observation alone (i.e. only by looking at the said phenomenon) in atomic physics and quantum mechanics, a finite and up to a certain point invisible perturbation is connected to every observation. The uncertainty principle is the recognition of absolute chance and arbitrariness in natural phenomena. On the other hand, as will become clear later, quantum mechanics does not predict a single, well-defined result for the observation or for any observer.
The fact that qubits can undergo quantum evolution in a set of superposition states which is neither 0 nor 1 implies quantum parallelism in the relevant computation. The evolution of each qubit, however, is not sufficient to construct all possible evolutions of a multi-qubit system. We must therefore
also interact with different qubits so that they can be intertwined in order to construct a satisfactory algorithm for such a computation. This special superposition is precisely called entangled quantum state.
Let us take two qubits as an example, which is a typical entangled state. Between them, the state representing the first qubit is connected to the state of the second qubit. The two connections are in quantum superposition and we cannot therefore talk about the state in which the two qubits are at that moment hence we talk about entanglement.
There is a more practical view of entanglement in quantum computing, i.e. entangled states usually arise from the control of one qubit (control qubit) over another (target qubit). The relationship between the control qubit and the target qubit is similar to the aforementioned Schrdingers Cat. According to this view, if the controlling part is in a state of superposition, the controlled part will be in a superposition of different controlled situations.
This entanglement process is an important element in quantum computing. We can say that superposition and entanglement synergistically weave the varied parallel evolution of quantum computing. Each measurement can only compute one of the possible states, and the superposition state no longer exists after the first measurement. Hence, with a view to obtaining the statistical information we need in the superposition state, we have to compute and measure results again.
Therefore, in many quantum algorithms (such as the Shors algorithm for factoring [which solves the problem of factor decomposition of integer numbers into primes] and digital quantum simulation), we need to use some interference mechanisms after the computation, so that the information of that phase containing the response in the superposition state is converted into conservation (with the implicit idea of preventing a final spill or loss) due to constructive interference (i.e. by the immediately following variation of other data produced), while further data is eliminated by destructive interference. In this way, the response can be obtained with fewer measurements. Most quantum algorithms rely heavily on the phenomenon of fluctuation and interference hence the relative phase is very important for quantum computing, which is called quantum coherence. In the hardware design of quantum computers, many considerations are related to how to protect the quantum state to prolong the coherence lifetime.
Quantum computers have a variety of hardware implementations, but the design considerations are similar. There are three common considerations: qubit operability, measurability, and protection of quantum states. In response to these considerations, a cavity quantum electrodynamics (cQED) system has been developed. A superconducting quantum system can be taken as an example to introduce the implementation of quantum computers. The difference in frequency between the resonant cavity and the qubit means that the coupling between the resonant cavity and the qubit tends not to exchange energy quanta, but only to generate entanglement, which means that the frequency of the resonant cavity will shift with the state of the qubit. Hence the state of the qubit can be deduced by measuring the microwave penetration or reflection spectrum near the resonant frequency with the bit readout line.
The entanglement mechanism between adjacent qubits is provided by the coupling relative to the electrical capacitance between cross-type capacitors. The coupling effect is controlled by the frequency difference between adjacent qubits. The oscillating behaviour reflects the quantum interference effect and its gradual disappearance leads to the decay of coherence and quantum energy.
The coherent lifetime of qubits is influenced by two factors, an intrinsic and an extrinsic one. The extrinsic influence comes mainly from the coupling between the qubit and the quantum state readout circuit. The presence of a filter-like protection mechanism in the microwave cavity between the bit and the readout line can provide a qubit-like protection mechanism because the cavity and the qubit have a frequency difference of about 718 MHz. The intrinsic influence comes mainly from the loss of the qubit itself and the sensitivity of its frequency to various types of noise, which can usually be suppressed by improved materials and processes and optimisation of the geometric structure.
Quantum computing has a wide range of applications, currently involved in the fields of decryption and cryptography, quantum chemistry, quantum physics, optimisation problems and artificial intelligence. This covers almost all aspects of human society and will have a significant impact on human life after practice. However, the best quantum computers are not yet able to express the advantages of quantum computing. Although the number of qubits on a quantum computer has exceeded 50, the circuit depth required to run the algorithm is far from sufficient. The main reason is that the error rate of qubits in the computation process is still very high, even though we can use quantum correction of qubits and fault-tolerant quantum computation. In the case of quantum computing, the accuracy which gradually improves data will greatly increase the difficulty of producing the hardware and the complexity of the algorithm. At present, the implementation of some well-known algorithms has only reached the level of conceptual demonstration, which is sufficient to demonstrate the feasibility of quantum computing, but practical application still has a long way to go.
But we should remain optimistic because, although general quantum computation still needs to be improved by quantum computer hardware, we can still find new algorithms and applications. Moreover, the development of hardware can also make great strides, just like the development of traditional computers in the beginning. In line with this goal, many existing technological industries could be upgraded in the near future. Research is running fast thanks also to significant public and private investment, and the first commercial applications will be seen in the short term.
Considering defence and intelligence issues, many governments are funding research in this area. The Peoples Republic of China and the United States of America have launched multi-year plans worth billions of yuan and dollars. The European Union has also established the Quantum Flagship Programme for an investment of one billion euros.
Related
Read more here:
Elderly care? Bring in the robots! - Modern Diplomacy
- Scientists use quantum machine learning to create semiconductors for the first time and it could transform how chips are made - Live Science - July 30th, 2025 [July 30th, 2025]
- IonQ Just Nabbed a Former JPMorgan Research Leader. How Should You Play the Quantum Computing Stock Here? - Yahoo Finance - July 30th, 2025 [July 30th, 2025]
- Quantum computing occurs naturally in the human brain, study finds - The Brighter Side of News - July 30th, 2025 [July 30th, 2025]
- Xanadu Advances TFLN Photonic Chips with HyperLight for Quantum Hardware Scaling - HPCwire - July 30th, 2025 [July 30th, 2025]
- D-Wave Quantum Announces Strategic Development Initiative for Advanced Cryogenic Packaging - TechPowerUp - July 30th, 2025 [July 30th, 2025]
- Prepping for the quantum threat requires a phased approach to crypto agility - csoonline.com - July 30th, 2025 [July 30th, 2025]
- Navigating The Quantum Revolution In A Year Of Transformation - Semiconductor Engineering - July 30th, 2025 [July 30th, 2025]
- QUBT or RGTI: Which Quantum Stock Offers the Better Upside Now? - TradingView - July 30th, 2025 [July 30th, 2025]
- Entanglement-induced provable and robust quantum learning advantages - Nature - July 30th, 2025 [July 30th, 2025]
- Researchers zero in on a new material for quantum information storage - anl.gov - July 30th, 2025 [July 30th, 2025]
- The best ways to play the emergence of quantum computing, according to Rosenblatt - CNBC - July 30th, 2025 [July 30th, 2025]
- Quantum Could be Threat And Shield For Tomorrows Warfighters, Strategists Suggest - The Quantum Insider - July 30th, 2025 [July 30th, 2025]
- QBTS or IONQ? Rosenblatt Picks the Better Quantum Computing Stock - TipRanks - July 30th, 2025 [July 30th, 2025]
- IonQ's Global Push: Will Asia Deals Spark the Next Growth Wave? - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- Variational Eigensolver Accurately Simulates Lattice Gauge Theory Ground States and String Breaking - Quantum Zeitgeist - July 28th, 2025 [July 28th, 2025]
- 'The era of quantum supremacy is just around the corner,' IonQ CEO says - CNBC - July 28th, 2025 [July 28th, 2025]
- Illinois is trying to get Canadian quantum firms to scale in Chicago - The Logic - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Nasdaq - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Why This Startup Is Building a $50 Million Computer - Inc.com - July 27th, 2025 [July 27th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Globe and Mail - July 27th, 2025 [July 27th, 2025]
- Could Metasurfaces be The Next Quantum Information Processors? - The Quantum Insider - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - Yahoo Finance - July 27th, 2025 [July 27th, 2025]
- IonQ CEO drops bold call on quantum computings tipping point - TheStreet - July 27th, 2025 [July 27th, 2025]
- Worlds most powerful quantum computer to be invested in by Denmark - IceNews - Daily News - July 27th, 2025 [July 27th, 2025]
- Buy D-Wave Quantum Stock, Analyst Says. Its a Compelling Investment Opportunity. - Barron's - July 24th, 2025 [July 24th, 2025]
- Pacific Northwest tech pioneers team up in quantum realms and on the space frontier - GeekWire - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - MSN - July 24th, 2025 [July 24th, 2025]
- Can Unisys Capitalize Early With Looming Quantum Threats? - TradingView - July 24th, 2025 [July 24th, 2025]
- Quantum Beach 2025 to Spotlight Floridas Role in the Global Quantum Economy - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- EXPLAINER - What is quantum computing, and why does it matter? - AnewZ - July 24th, 2025 [July 24th, 2025]
- D-Wave or IonQ: Which Quantum Stock Has More Upside in 2025? - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Infleqtion to Build Neutral Atom Quantum Computer in Illinois, Backed by $50 Million Partnership - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- The worlds most powerful quantum computer is coming to Denmark - Evertiq - July 24th, 2025 [July 24th, 2025]
- Microsoft and Atom Computing to build "worlds most powerful quantum computer" in Denmark - Data Center Dynamics - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Quantum Stocks Slide: Is the Hype-Fueled Rally Over? - 24/7 Wall St. - July 22nd, 2025 [July 22nd, 2025]
- Apply to host an event at Qiskit Fall Fest 2025! - IBM - July 22nd, 2025 [July 22nd, 2025]
- 'NSF was there at the start' an experimental quantum chip may yield more robust qubits - National Science Foundation (.gov) - July 22nd, 2025 [July 22nd, 2025]
- Want to Invest in Quantum Computing? 4 Stocks That Are Great Buys Right Now - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Will IonQ's Hardware Push Drive the Next Wave of Quantum Monetization? - TradingView - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - AOL.com - July 22nd, 2025 [July 22nd, 2025]
- JPMorgan Overhauls Quantum Team, Rehires Former Exec - IoT World Today - July 22nd, 2025 [July 22nd, 2025]
- 54-qubit superconducting quantum processor from IQM now avaialable on Amazon Braket - Scientific Computing World - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - MSN - July 22nd, 2025 [July 22nd, 2025]
- New trapped-atom qubit technology translates to industry-ready quantum computing product - College of Engineering | University of Wisconsin-Madison - July 22nd, 2025 [July 22nd, 2025]
- D-Wave Quantum (QBTS) Capitalizes on Annealing Advantage to Extend Bullish Outlook - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- Google Research Award Calls For Scientists to Probe Quantum Effects in The Brain - The Quantum Insider - July 22nd, 2025 [July 22nd, 2025]
- Quantum Computing Threatens Blockchains, Driving Development Of Resistant Systems - Quantum Zeitgeist - July 22nd, 2025 [July 22nd, 2025]
- Quantum Computing: What We Know Ahead Of Q2 (NASDAQ:QUBT) - Seeking Alpha - July 22nd, 2025 [July 22nd, 2025]
- SpinQ's Quantum Computing Breakthrough: 100-Qubit Machine by Year-End - News and Statistics - IndexBox - July 22nd, 2025 [July 22nd, 2025]
- QED-C holds second annual Quantum Technologies Showcase on Capitol Hill - Scientific Computing World - July 22nd, 2025 [July 22nd, 2025]
- The Quantum Bitcoin Summit: A Grounded Look At The Issues - Bitcoin Magazine - July 22nd, 2025 [July 22nd, 2025]
- Why Shares of Rigetti Computing Have Blasted 41% Higher This Week - The Motley Fool - July 22nd, 2025 [July 22nd, 2025]
- Quantum computing will soon crack todays encryption methods.Here are 3 ways businesses can prepare - The World Economic Forum - July 22nd, 2025 [July 22nd, 2025]
- 7M Bitcoin at Risk as Quantum Computing Set to Break Crypto in 3 Years | Interview - Cryptonews - July 22nd, 2025 [July 22nd, 2025]
- QED-C Holds Second Annual Quantum Technologies Showcase on Capitol Hill - The Quantum Insider - July 22nd, 2025 [July 22nd, 2025]
- PsiQuantums Chicago quantum computer to begin operations in 2028 - Bloomberg - Investing.com - July 22nd, 2025 [July 22nd, 2025]
- Chicagos $1 Billion Quantum Computer Set to Go Live in 2028 - Bloomberg.com - July 22nd, 2025 [July 22nd, 2025]
- Are We in a Quantum Computing Bubble? - MSN - July 20th, 2025 [July 20th, 2025]
- Quantum computing is so fire No, seriously. BofA says it could be humanity's biggest breakthrough since the discovery of fire - Fortune - July 20th, 2025 [July 20th, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Bitcoin News: How Quantum Computing Threatens the Math Behind Satoshi Nakamoto's Creation - CoinDesk - July 20th, 2025 [July 20th, 2025]
- Should You Invest $1,000 in Quantum Computing Competitor Rigetti Computing? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Google solves septillionyear problem This quantum chip is the end of computers - El Diario 24 - July 20th, 2025 [July 20th, 2025]
- Researchers Push for Open-Source Quantum Tools to Break Critical Industry Bottlenecks - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Quantum Leap or Overpriced Hype? D-Wave's $400M Raise and the Future of Quantum Computing - AInvest - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Globe and Mail - July 20th, 2025 [July 20th, 2025]
- Quantum computing edges closer to biotech reality in Moderna-IBM pact - R&D World - July 20th, 2025 [July 20th, 2025]
- Scientists achieve 'magic state' quantum computing breakthrough 20 years in the making quantum computers can never be truly useful without it -... - July 20th, 2025 [July 20th, 2025]
- Guest Post -- Practical Quantum Advantage in the Context of Quantum AI: Rise of the Hybrid Systems - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Scientists make 'magic state' breakthrough after 20 years without it, quantum computers can never be truly useful - Live Science - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- EIFO and the Novo Nordisk Foundation Acquire the Worlds Most Powerful Quantum Computer - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Israel and US to forge $200m tech hub for AI and quantum science development - The Times of Israel - July 18th, 2025 [July 18th, 2025]
- Quantum code breaking? You'd get further with an 8-bit computer, an abacus, and a dog - theregister.com - July 18th, 2025 [July 18th, 2025]
- Is quantum computing the next big thing in stocks? - TheStreet - July 18th, 2025 [July 18th, 2025]
- What to do while pursuing the promise of quantum computing - Brookings - July 18th, 2025 [July 18th, 2025]