Four Teams Using ORNL’s Summit Supercomputer Named Finalists in 2020 Gordon Bell Prize – HPCwire
Nov. 11, 2020 Since 1987, the Association for Computing Machinery has awarded the annual Gordon Bell Prize to recognize outstanding achievements in high-performance computing (HPC). Presented each year at the International Conference for High-Performance Computing, Networking, Storage and Analysis (SC), the prizes not only reward innovative projects that employ HPC for applications in science, engineering, and large-scale data analytics but also provide a timeline of milestones in parallel computing.
As a frequent home to the worlds most powerful and smartest scientific supercomputers, the US Department of Energys (DOEs) Oak Ridge National Laboratory (ORNL) has hosted many previous Gordon Bell honorees on its HPC systems. The Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL, manages these systems and makes them available to scientists around the world to accelerate scientific discovery and engineering progress. Consequently, the OLCF has provided the HPC systems for 25 previous Gordon Bell Prize finalists and eight winners, including last years team from ETH Zrich.
This year, four projects that used ORNLs IBM AC922 Summit supercomputer are finalists. The 2020 Gordon Bell Prize will be award November 19 at SC20. Here are the finalists that used Summit.
DeePMD-kit: A New Paradigm for Molecular Dynamics Modeling
The code produced by Team DeePMD, with its ability to scale to huge numbers of atoms, while retaining chemical accuracy, is poised to transform the field of materials research. Applications to other fields will surely follow. Michael Klein, Laura H. Camell Professor of Science, Temple University
Molecular dynamics modeling has become a primary tool in scientific inquiry, allowing scientists to analyze the movements of interacting atoms over a set period of time, which helps them determine the properties of different materials or organisms. These computer simulations often lead the way in designing everything from new drugs to improved alloys. However, the two most popular methodologies come with caveats.
Classical molecular dynamics (MD), using Newtonian physics, can simulate trillions of particles on a modern supercomputerhowever, its accuracy for more intricate simulations has limitations. Ab initio (from the beginning) molecular dynamics (AIMD), using quantum physics at each time step, can produce much more accurate resultsbut its inherent computational complexity limits the size and time span of its simulations. But what if there was a way to bridge the gap between MD and AIMD, to produce complex simulations that are both large and accurate?
With the power of ORNLs Summit supercomputer, researchers from Lawrence Berkeley National Laboratorys Computational Research Division; the University of California, Berkeley; the Institute of Applied Physics and Computational Mathematics, Peking University; and Princeton University successfully tested a software package that offers a potential solution: DeePMD-kit, named for deep potential molecular dynamics.
The team refers to DeePMD-kit as a HPC+AI+Physical model in that it combines high-performance computing (HPC), artificial intelligence (AI), and physical principles to achieve both speed and accuracy. It uses a neural network to assist its calculations by approximating the ab initio data, thereby reducing the computational complexity from cubic to linear scaling.
Simulating a block of copper atoms, the team put DeePMD-kit to the test on Summit with the goal of seeing how far they could push the simulations size and timescales beyond AIMDs accepted limitations. They were able to simulate a system of 127.4 million atomsmore than 100 times larger than the current state of the art. Furthermore, the simulation achieved a time-to-solution mark of at least 1,000 times faster at 2.5 nanoseconds per day for mixed-half precision, with a peak performance of 275 petaflops (one thousand million million floating-point operations per second) for mixed-half precision.
By combining physical principles and the representation power of deep neural networks, the Deep Potential method can achieve very good accuracy, especially for complex problems, said Weile Jia, a postdoc in applied mathematics in Professor Lin Lins group at the Math Department of UC Berkeley, who co-led the project with Linfeng Zhang of Princeton. Then we reorganize the data layout for bigger granularity on GPU and use data compression to significantly speedup the bottleneck. The neural network operators are optimized to the extreme, and most importantly, we successfully use half-precision in our code without losing accuracy.
Square Kilometre Array: Massive Data Processing to Explore the Universe
The innovative results already achieved and goals being pursued by this international team will greatly benefit the Next Generation Very Large Array, the Square Kilometre Array, and the next generation of radio interferometer facilities around the world. Tony Beasley, Director, National Radio Astronomy Observatory
Scheduled to begin construction in 2021, the Square Kilometre Array (SKA) promises to become one of the biggest Big Science projects of all time (in physical size): a radio telescope array with a combined collecting area of over 1 square kilometer, or 1 million square meters. Once completed in the deserts of South Africa and Australia in the late 2020s, SKAs thousands of dishes and low-frequency antennas will plumb the universe to figure out its mysteries.
SKAs mission ultimately means it will produce massive amounts of informationan estimated 600 petabytes of data per year. Collecting, storing, and analyzing that data will be critical in producing SKAs scientific discoveries. How will it be managed?
Building an end-to-end data-processing system on such an unprecedented scale is the task of an international team of radio astronomers, computer scientists, and software engineers. Workflow experts from the International Centre for Radio Astronomy Research (ICRAR) in Australia and the Shanghai Astronomical Observatory (SHAO) in China are developing the Daliuge workflow management system; GPU experts from Oxford University are optimizing the performance of the data generator; and input/output (I/O) experts at ORNL are producing I/O middleware based on the ORNL-developed Adaptable IO System (ADIOS). These three core software packages were completely developed by the team, with the original scope of running on top supercomputers.
Because SKA does not yet exist, its huge data output was simulated on Summit in order to test the teams work, running a complete end-to-end workflow for a typical 6-hour SKA Phase 1 Low Frequency Array observation. The team used 99 percent of Summit, achieving 130 petaflops peak performance for single-precision, 247 gigabytes per second data generation rate, and 925 gigabytes per second pure I/O rate.
For the first time, an end-to-end SKA data-processing workflow was executed in a production environment. It helps the SKA communityas well as the entire radio astronomy communitydetermine critical design factors for multi-billion-dollar next generation radio telescopes, said Ruonan Wang, a software engineer in ORNLs Scientific Data Group who works on the project. It validated our ability, from both software and hardware perspectives, to process a key science case of SKA, which will answer some of the fundamental questions of our universe.
DSNAPSHOT: An Accelerated Approach to Literature-Based Discovery
The DSNAPSHOT algorithm approach enables the identification of meaningful paths and novel relations on a previously unseen scale. Consequently, it moves the biomedical research community closer to a framework for analyzing how novel relations can be identified across the entire body of scientific literature. Michael Weiner, PhD, VP AxioMx, Molecular Sciences and Head, Global Research of Abcam
In 1986, the late information scientist Don Swanson introduced the concept of undiscovered public knowledge in the field of biomedical research. His idea was both intriguing and straightforward: Out of the millions of published pieces of medical literature, what if there are yet unseen connections between their findings that could lead to new treatments? If, for example, A affects B in one study and B affects C in another, perhaps A and C have undiscovered commonalities worth investigating. Swanson proved his point by analyzing unrelated papers for such links, leading to hypothetical treatments that were later supported by clinical studies, such as taking magnesium supplements to help prevent migraine headaches. This process became known as Swanson Linking.
But in light of the enormous size of scientific literature in existence, mining it for undiscovered connections cannot be effectively conducted on a mass scale by mere humans. For example, the US National Library of Medicines PubMed database contains over 30 million citations and abstracts for biomedical literature. How can researchers possibly track that much information in its totality and find the patterns that may help identify new treatments?
One answer may be data-mining algorithms optimized for GPU-accelerated supercomputers such as ORNLs Summit. When the federal government mobilized its national labs in the fight against COVID-19 in March, a team of ORNL and Georgia Tech researchers was assembled by ORNL computer scientist Ramakrishnan Kannan and Thomas E. Potok, head of ORNLs Data and AI Systems Section of the Computer Science and Mathematics Division. The teams mission was to investigate new ways of searching large-scale bodies of scholarly literatureand they ultimately found a way to conduct Swanson Linking on huge datasets at unprecedented speed.
Dasha Herrmannova from Kannans team began by creating a graph dataset based on Semantic MEDLINEa dataset of biomedical concepts and the relations between themextracted from PubMed. Then they expanded the graph with information extracted from the COVID-19 Open Research Dataset (CORD-19), resulting in a dataset of 18.5 million nodes representing concepts and papers, with 213 million relationships between them.
To search this massive dataset (via knowledge graph representations) for potential COVID-19 treatments, the team developed a new high-performance implementation of the Floyd-Warshall algorithm. The classic algorithm, originally published in 1962, determines the shortest distances between every pair of vertices in a given graph. (In terms of literature-based discovery, the shortest paths are usually more likely to reveal new connections between scholarly works.) Wanting to overcome the computational bottleneck of tackling massive graphs, Kannan, Piyush Sao, Hao Lu, and Robert Patton from ORNL, in collaboration with Vijay Thakkar and Rich Vuduc from Georgia Tech, optimized their version of the algorithm for distributed-memory parallel computers accelerated by GPUs. They named it Distributed Accelerated Semiring All-Pairs Shortest Path (DSNAPSHOT).
In effect, the teams DSNAPSHOT is a supercharged version of Floyd-Warshall, able to identify the shortest paths in huge graphs in a matter of minutes. Using 90 percent of the Summit supercomputeror 4,096 nodes, adding up to 24,576 GPUsthe team was able to compute an All-Pairs Shortest Path computation on a graph with 4.43 million vertices in 21.3 minutes. Peak performance reached 136 petaflops for single-precision. If every person on Earth completed one calculation per second, it would take the worlds population (~7 billion) 7 and a half months to complete what DSNAPSHOT can do in 1 second on Summit.
To the best of our knowledge, DSNAPSHOT is the first method capable of calculating shortest path between all pairs of entities in a biomedical knowledge graph, thereby enabling the discovery of meaningful relations across the whole of biomedical knowledge, Kannan said. Looking forward, we believe this novel capability will enable the mining of scholarly knowledge corpora when embedded and integrated into artificial intelligencedriven natural language processing workflows at scale.
BerkeleyGW: A New View into Excited-State Electrons
The BerkeleyGW teams demonstration of excited-state calculations with the GW method for 1,000-atom systems on accessible HPC facilities will be a game-changer. Researchers with diverse interests will be able to pursue fundamental understanding of excited states and physical processes in materials systems including novel two-dimensional semiconductors, electrochemical interfaces, organic molecular energy harvesting systems, and materials proposed for quantum information systems. Mark S. Hybertsen, Group Leader, Theory & Computation Group Center for Functional Nanomaterials, Brookhaven National Laboratory
Historical epochs are often delineated by the materials that helped shape civilization, from the Stone Age to the Steel Age. Our current period is often referred to as the Silicon Agebut while those earlier eras were characterized by the structural properties of their predominant materials, silicon is different. Rather than ushering in new ways of building big things, its technological leap takes place on an atomic level, facilitating an information revolution.
Used as the main material in integrated circuits (AKA, the microchip), silicon has enabled the world of data processing we currently live in, from ever-more-powerful computers to unavoidable handheld devices. Central to its success has been the ability of chip designers to engineer these circuits to be increasingly faster and smaller, yet with more capacity as they add more and more transistors. But can microprocessor architects keep up with Moores law and continue to double the number of transistors in an integrated circuit every 2 years?
One route forward may be found in the work of a team of six physicists, materials scientists, and HPC specialists from the Berkeley Lab, UC Berkeley, and Stanford University that performed the largest-ever study of excited-state electrons using ORNLs Summit supercomputer. Understanding and controlling such electronic excitation in silicon and other materials is key to designing the electronic and optoelectronic devices that have sparked the current information era. Whats more, the accurate modeling of excited-state properties of electrons in materials plays a crucial role in the rational design of other transformative technologies, including photovoltaics, batteries, and qubits for quantum information and quantum computing. In essence, the teams high-performance calculations could help design new materials for these next generation technologies.
A state-of-the-art tool for determining excitations in materials is the GW method, an approach for calculating the self-energy (the quantum energy that a particle acquired from interactions with its surrounding environment) of a system of interacting electrons. The team adapted its own software package: BerkeleyGWa quantum many-body perturbation theory code for excited statesto run on Summits GPU accelerators.
The teams study of a system of defects in silicon and silicon carbide resulted in groundbreaking performance: the largest high-fidelity GW calculations ever made, with 10,986 valence electrons. By running on the entire Summit supercomputer, they also achieved 105.9 petaflops of double-precision performance with a time to solution of roughly 10 minutes.
Whats really exciting about these numbers is that together they usher in the practical use of the high-fidelity GW method to the study of realistic complex materials, said Jack Deslippe, team leader and head of the Applications Performance Group at the National Energy Research Scientific Computing Center, or NERSC. These will be materials with defects, with interfaces, and with large geometries that drive real device design in quantum information, energy generation and storage, and next-gen electronics.
UT-Battelle LLC manages Oak Ridge National Laboratory for DOEs Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOEs Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.
Source: COURY TURCZYN, ORNL
Original post:
Four Teams Using ORNL's Summit Supercomputer Named Finalists in 2020 Gordon Bell Prize - HPCwire
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]
- Riverlanes Quantum Error Correction Report: Defining the Path to Fault-Tolerant Computing and the MegaQuOp Milestone - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computing, Inc. Enters Final Stage of Commissioning Quantum Photonic Chip Foundry in Tempe, Arizona - Yahoo Finance - October 23rd, 2024 [October 23rd, 2024]
- Why experts are warning businesses to prepare for quantum now or face critical cyber risks when it arrives - ITPro - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computers Expected to Be Useful by 2026, Survey - IoT World Today - October 23rd, 2024 [October 23rd, 2024]
- ParTec AG and HZDR to Build AI Supercomputer Supporting Research in AI, Quantum Computing, and HPC - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Pete Shadbolt on Tackling the Challenges of Quantum Computing & Its Future Impact on Everyday Life - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- How to build a quantum computer that's actually useful - Space Daily - October 23rd, 2024 [October 23rd, 2024]
- Quantum Algorithms for Faster Pattern Matching in Genomics and Text Processing, and Data-Intensive Applications - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- 2025 Tech Trends Report: New Insights on IT Investment in AI, Quantum Computing, and Cybersecurity Published by Info-Tech Research Group - PR Newswire - October 23rd, 2024 [October 23rd, 2024]
- Next Quantum Computer Comes To Netherlands - Mirage News - October 23rd, 2024 [October 23rd, 2024]