Keeping classified information secret in a world of quantum computing – Bulletin of the Atomic Scientists
By the end of 1943, the US Navy had installed 120 electromechanical Bombe machines like the one above, which were used to decipher secret messages encrypted by German Enigma machines, including messages from German U-boats. Built for the Navy by the Dayton company National Cash Register, the US Bombe was an improved version of the British Bombe, which was itself based on a Polish design. Credit: National Security Agency
Quantum computing is a technology that promises to revolutionize computing by speeding up key computing tasks in areas such as machine learning and solving otherwise intractable problems. Some influential American policy makers, scholars, and analysts are extremely concerned about the effects quantum computing will have on national security. Similar to the way space technology was viewed in the context of the US-Soviet rivalry during the Cold War, scientific advancement in quantum computing is seen as a race with significant national security consequences, particularly in the emerging US-China rivalry. Analysts such as Elsa Kania have written that the winner of this race will be able to overcome all cryptographic efforts and gain access to the state secrets of the losing government. Additionally, the winner will be able to protect its own secrets with a higher level of security than contemporary cryptography guarantees.
These claims are considerably overstated. Instead of worrying about winning the quantum supremacy race against China, policy makers and scholars should shift their focus to a more urgent national security problem: How to maintain the long-term security of secret information secured by existing cryptographic protections, which will fail against an attack by a future quantum computer.
The race for quantum supremacy. Quantum supremacy is an artificial scientific goalone that Google claims to have recently achievedthat marks the moment a quantum computer computes an answer to a well-defined problem more efficiently than a classical computer. Quantum supremacy is possible because quantum computers replace classical bitsrepresenting either a 0 or a 1with qubits that use the quantum principles of superposition and entanglement to do some types of computations an order of magnitude more efficiently than a classical computer. While quantum supremacy is largely meant as a scientific benchmark, some analysts have co-opted the term and set it as a national-security goal for the United States.
These analysts draw a parallel between achieving quantum supremacy and the historical competition for supremacy in space and missile technology between the United States and the Soviet Union. As with the widely shared assessment in the 1950s and 1960s that the United States was playing catchup, Foreign Policy has reported on a quantum gap between the United States and China that gives China a first mover advantage. US policy experts such as Kania, John Costello, and Congressman Will Hurd (R-TX) fear that if China achieves quantum supremacy first, that will have a direct negative impact on US national security.
Some analysts who have reviewed technical literature have found that quantum computers will be able to run algorithms that allow for the decryption of encrypted messages without access to a decryption key. If encryption schemes can be broken, message senders will be exposed to significant strategic and security risks, and adversaries may be able to read US military communications, diplomatic cables, and other sensitive information. Some of the policy discussion around this issue is influenced by suggestions that the United States could itself become the victim of a fait accompli in code-breaking after quantum supremacy is achieved by an adversary such as China. Such an advantage would be similar to the Allies advantage in World War II when they were able to decrypt German radio traffic in near-real time using US and British Bombe machines (see photo above).
The analysts who have reviewed the technical literature have also found that quantum technologies will enable the use of cryptographic schemes that do not rely on mathematical assumptions, specifically a scheme called quantum key distribution. This has led to the notion in the policy community that quantum communications will be significantly more secure than classical cryptography. Computer scientist James Kurose of the National Science Foundation has presented this view before the US Congress, for example.
Inconsistencies between policy concerns and technical realities. It is true that quantum computing threatens the viability of current encryption systems, but that does not mean quantum computing will make the concept of encryption obsolete. There are solutions to this impending problem. In fact, there is an entire movement in the field to investigate post-quantum cryptography. The aims of this movement are to find efficient encryption schemes to replace current methods with new, quantum-secure encryption.
The National Institute of Standards and Technology is currently in the process of standardizing a quantum-safe public key encryption system that is expected to be completed by 2024 at the latest. The National Security Agency has followed suit by announcing its Commercial National Security Algorithm Encryption Suite. These new algorithms can run on a classical computera computer found in any home or office today. In the future, there will be encryption schemes that provide the same level of security against both quantum and classical computers as the level provided by current encryption schemes against classical computers only.
Because quantum key distribution enables senders and receivers to detect eavesdroppers, analysts have claimed that the ability of the recipient and sender [to] determine if the message has been intercepted is a major advantage over classical cryptography. While eavesdropper detection is an advancement in technology, it does not actually provide any significant advantage over classical cryptography, because eavesdropper detection is not a problem in secure communications in the first place.
When communicating parties use quantum key distribution, an eavesdropper cannot get ciphertext (encrypted text) and therefore cannot get any corresponding plaintext (unencrypted text). When the communicating parties use classical cryptography, the eavesdropper can get ciphertext but cannot decrypt it, so the level of security provided to the communicating parties is indistinguishable from quantum key distribution.
The more pressing national security problem. While the technical realities of quantum computing demonstrate that there are no permanent security implications of quantum computing, there is a notable longer-term national security problem: Classified information with long-term intelligence value that is secured by contemporary encryption schemes can be compromised in the future by a quantum computer.
The most important aspect of the executive order that gives the US government the power to classify information, as it relates to the discussion of quantum computing and cryptography, is that this order allows for the classification of all types of information for as long as 25 years. Similarly, the National Security Agency provides guidelines to its contractors that classified information has a potential intelligence life of up to 30 years. This means that classified information currently being secured by contemporary encryption schemes could be relevant to national security through at least 2049and will not be secure in the future against cryptanalysis enabled by a quantum computer.
In the past, the United States has intercepted and stored encrypted information for later cryptanalysis. Toward the end of World War II, for example, the United States became suspicious of Soviet intentions and began to intercept encrypted Soviet messages. Because of operator error, some of the messages were partially decryptable. When the United States realized this, the government began a program called the Venona Project to decrypt these messages.
It is likely that both the United States and its adversaries will have Venona-style projects in the future. A few scholars and individuals in the policy community have recognized this problem. Security experts Richard Clarke and Robert Knake have stated that governments have been rumored for years to be collecting and storing other nations encrypted messages that they now cannot crack, with the hope of cracking them in the future with a quantum computer.
As long as the United States continues to use encryption algorithms that are not quantum-resistant, sensitive information will be exposed to this long-term risk. The National Institute of Standards and Technologys quantum-resistant algorithm might not be completedand reflected in the National Security Agencys own standarduntil 2024. The National Security Agency has stated that algorithms often require 20 years to be fully deployed on NSS [National Security Systems]. Because of this, some parts of the US national security apparatus may be using encryption algorithms that are not quantum-resistant as late as 2044. Any information secured by these algorithms is at risk of long-term decryption by US adversaries.
Recommendations for securing information. While the United States cannot take back any encrypted data already in the possession of adversaries, short-term reforms can reduce the security impacts of this reality. Taking 20 years to fully deploy any cryptographic algorithm should be considered unacceptable in light of the threat to long-lived classified information. The amount of time to fully deploy a cryptographic algorithm should be lowered to the smallest time frame feasible. Even if this time period cannot be significantly reduced, the National Security Agency should take steps to triage modernization efforts and ensure that the most sensitive systems and information are updated first.
Luckily for the defenders of classified information, existing encryption isnt completely defenseless against quantum computing. While attackers with quantum computers could break a significant number of classical encryption schemes, it still may take an extremely large amount of time and resources to carry out such attacks. While the encryption schemes being used today can eventually be broken, risk mitigation efforts can increase the time it takes to decrypt information.
This can be done by setting up honeypotssystems disguised as vulnerable classified networks that contain useless encrypted dataand allowing them to be attacked by US adversaries. This would force adversaries to waste substantial amounts of time and valuable computer resources decrypting useless information. Such an operation is known as as defense by deception, a well-proven strategy to stymie hackers looking to steal sensitive information. This strategy is simply an application of an old risk mitigation strategy to deal with a new problem.
Quantum computing will have an impact on national security, just not in the way that some of the policy community claims that it will. Quantum computing will not significantly reduce or enhance the inherent utility of cryptography, and the outcome of the race for quantum supremacy will not fundamentally change the distribution of military and intelligence advantages between the great powers.
Still, the United States needs to be wary of long-term threats to the secrecy of sensitive information. These threats can be mitigated by reducing the deployment timeline for new encryption schemes to something significantly less than 20 years, triaging cryptographic updates to systems that communicate and store sensitive and classified information, and taking countermeasures that significantly increase the amount of time and resources it takes for adversaries to exploit stolen encrypted information. The threats of quantum computing are manageable, as long as the US government implements these common-sense reforms.
Editors Note: The author wrote a longer version of this essay under a Lawrence Livermore National Laboratory contract with the US Energy Department. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. The views and opinions of author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. LLNL-JRNL-799938.
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]
- Quantum Computing is a cross industry revolution, and we want to be part of it - CTech - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Stocks Fall. Here's A Look At Upcoming News Events. - Investor's Business Daily - April 1st, 2025 [April 1st, 2025]