Meet QSA’s early-career researchers advancing the QIS frontier – UNM Newsroom
The Quantum Systems Accelerator has been catalyzing the quantum information science (QIS) ecosystem since its foundation in 2020 as a National QIS Research Center. In recognition of the new generation of scientists and engineers preparing to harness the advances in this fast-growing field, QSA continues its series profiling early-career researchers at the centers partner institutions. Three from the Center for Quantum Information and Control at the University of New Mexico contributed their views and explained how they maximize the deep collaborative opportunities at QSA.
Anupam Mitra
Anupam MitraAnupam Mitra is a Ph.D. candidate in Physics at The University of New Mexico and part of the Deutsch Research Group at CQuIC. He focuses on some of the building blocks of neutral atom quantum computers, which involve ultracold atoms cooled to a few micro-Kelvins above absolute zero. Mitra also studies how these ultracold atoms offer the ability to solve quantum problems by simulating model quantum systems. The exponentially large number of variables needed to understand, for example, the properties of matter and energy, make these problems ideal candidates for quantum devices instead of classical computers.
Since middle school, Mitra has been interested in the physics of interference in light waves, and he has also enjoyed building and programming computers. As an undergraduate in Physics and Computer Science at the Birla Institute of Technology and Science in Goa, India, Mitra first learned how quantum phenomena such as superposition, interference, and entanglement can be used for quantum information processing.
What excites you about this growing new field?"The ability to make intermediate-scale quantum systems has led to discoveries of previously inaccessible phenomena and new ways of understanding other quantum phenomena. More complex quantum systems will help us tackle questions about the nature of space and time, the emergence of classical physics from quantum physics, and the properties of large quantum systems. Moreover, they will allow us to have more precise measurements to investigate principles and phenomena beyond what is currently accessible. I hope the research and development in quantum information processing will help humanity, from potentially finding efficient ways to harness solar energy to improving chemical processes like nitrogen fixation."
How has QSA supported your research journey?"QSA has a broad community of researchers tackling several problems at the forefront of quantum information science and technology. Regular interactions with the wider community through seminars, panel discussions, and other events have been beneficial for the rapid exchange of ideas among groups and for sharing knowledge regarding solutions to commonly faced problems. I have benefited from these events, as well as from the broader collaborations with QSA researchers. Moreover, the center-wide discussions about common challenges and issues has reduced the duplication of efforts."
Goals"From a theoretical standpoint, it is easy to imagine ideal quantum systems with well-understood noise and error sources. However, there are always limitations to what contemporary quantum experiments can do, given the complexities introduced by a more extensive quantum system. This reality has been a challenge and a learning experience, so my short-term research goal is to advance quantum information processing with highly excited Rydberg atoms. I also want to finish my doctorate and participate in developing domain-specific robust quantum devices that augment our ability to perform precise measurements, calculate properties of matter, and solve other complex computational problems. Finally, I want to increase diversity, equity, and inclusion in the field, by making it more accessible to underrepresented groups and people whose life circumstances have hindered them from accessing traditional education."
Advice to high-school students"Broadly speaking, scientific research is a collaborative human effort, so the progress we make today is based on the work of others. While many academic circumstances typically encourage us to work by ourselves, communication and exchanging knowledge are essential in science. One can learn from experts by reading their work and speaking with them. It is also essential to reach out to those who aspire to join our efforts, and especially to include groups who have been disadvantaged.
"Specifically, quantum information science and technology is a rapidly growing field that will benefit from researchers from different backgrounds. At present, many of the discussions use the language of quantum mechanics, which is heavy in linear algebra and calculus; thus, an understanding of these concepts can prepare someone better to be a part of the conversation. Most of the problems we are trying to solve are challenging enough to require contributions from many people, and therefore, we would like as many people to join us as possible."
_________________________
Pablo Poggi
Pablo PoggiPablo Poggi is a research assistant professor in Physics and Astronomy at the University of New Mexico specializing in quantum control to counteract and tailor the unwanted noise, environmental effects, and errors in quantum devices. In his theoretical research, he pushes the fundamental limitations of quantum control and studies novel methods to build, run, and benchmark quantum simulation devices.
Poggi was the lead organizer for the CQuIC summer course on quantum chaos for QSA members and the broader QIS community. Quantum chaos examines how complex quantum systems use quantum simulators and how features such as hypersensitivity could hinder reliable quantum information processing. Students and faculty across the United States attended the summer course, engaging in the scientific discussions and the lectures.
Poggi first considered physics a career thanks to a high school teacher in Argentina who encouraged him to study the revolutionary theories of relativity and quantum mechanics. Fascinated with quantum theory after reading a book by Einstein, he learned to love math and its connection with physics at the University of Buenos Aires, where he pursued experimental research in an optics lab while finally choosing theoretical research in quantum control.
What excites you about this growing new field?"Quantum physics used to be regarded as a set of bizarre rules that governed the strange behavior of the atomic world. For the past decades, it has been recognized that these rules could be seen as a feature rather than a bug, so that quantum states of superposition may be used to solve computational problems more efficiently. I am particularly excited that there is still a lot to learn about the physics of complex quantum systems, especially out of equilibrium. Quantum devices have a tremendous potential to advance knowledge in this area. The notion of quantum chaos, for example, has taken a new shape in the past few years in the field as researchers started to learn the role of entanglement spreading in many quantum systems and its connection to other system properties such as chaos, ergodicity, and thermalization.
"We live in a unique moment where quantum technologies are being developed with significant pushes from theory and experiment in academic settings, national labs, and industry. As a theorist, it is particularly exciting to think that our studies and inquiries about the fundamental capabilities to manipulate quantum systems could lead to enabling new features in industrial applications - or even to understanding why certain things cannot be done and thus why the focus should be targeted in another direction.
How has QSA supported your research journey?"Being a part of QSA has allowed me to learn about what others are doing and regularly share my work with the community without attending a formal workshop or conference. Many of my collaborators and colleagues here at UNM are part of the QSA, so participating in these collaborative activities is common. It establishes a genuine connection between different groups, potentially leading to more interdisciplinary work.
"Research-wise, we recently finished a QSA project where we studied how a quantum simulator becomes more error-prone in specific types of situations. We discovered that these situations could be explained partly by concepts developed for quantum physics and classical dynamics systems. Making this connection between quantum information and other topics on firm grounds was challenging. It demanded leaving the comfort zone of our expertise to learn about concepts in condensed matter and nonlinear dynamics, so one of the most rewarding aspects of being part of QSA is being able to engage with many colleagues at other institutions and in different ways. QIS is truly an interdisciplinary field, so having done this is a good practice for the future as well."
Goals"I look forward to taking advantage of all the center-wide knowledge and expertise being developed in a variety of topics and collaborating with people from other institutions to keep up to date and get early access to the most recent developments in QIS."
Advice to high-school students"It is exciting to get involved in QIS research because quantum technologies are still in development. There is a lot to do, and the tasks are very diverse. For example, theres research in quantum algorithms and applications of quantum devices, the fundamentals of quantum information processing, and developing the essential tools in the lab to make the quantum devices. Think about what excites you the most and look for mentors to help you get started. But also, dont be afraid to try different things. Its typically hard to find a good match on the first try and you will gain more tools to tackle problems in your future research. QIS is interdisciplinary, so being in touch with specialized communities with diverse expertise will always be a plus."
_________________________
Changhao Yi
Changhao YiChanghao Yi is a graduate student and part of the Crosson Research Group at CQuIC.
Yi specializes in quantum algorithms, specifically those for Hamiltonian simulation to study condensed matter physics and materials science.
What excites about this growing new field?"I think we are in a stage when the development of theoretical physics slows down. There are two main reasons. First, the systems are too complicated to solve even if we know all the basic principles; second, experimental physics is not developed enough to discover new phenomena. I believe the construction and control of complex quantum systems can be helpful in both aspects, so it's fascinating to combine the different knowledge areas in theoretical physics, math, and computer science to create something new.
"I look forward to the realization of quantum computing and how the concepts in quantum information, like entanglement and complexity, can be helpful in our understanding of condensed matter physics and high energy physics.
How has QSA supported your research journey?"My experience with QSA has been helpful in my research because I tune in to the QSA science talks frequently. I have also had the chance to meet researchers with similar experiences and interests. This regular communication broadens my horizon and motivates me to progress. The main challenge is learning how to collaborate with other researchers with different backgrounds. For example, I have a physics undergraduate degree. Still, my mentor at UNM has a background in computer science. And I meet researchers at QSA with a diversity of experiences, so sometimes I need to work on projects with many unfamiliar concepts."
Goals"My short-term goal is to continue my research and gain more theoretical and hands-on experience. My long-term goal is to become a professor in the field."
Advice to high-school students"Quantum information science is a research area with vitality. If you are interested in experiments, computer science, math, or theoretical physics, you can find plenty of questions to work on. This community is growing every day. It's the right time to join now."
_________________________
Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Labs facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energys Office of Science.
DOEs Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.
For more information, visit Energy.gov.
See original here:
Meet QSA's early-career researchers advancing the QIS frontier - UNM Newsroom
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]
- Riverlanes Quantum Error Correction Report: Defining the Path to Fault-Tolerant Computing and the MegaQuOp Milestone - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computing, Inc. Enters Final Stage of Commissioning Quantum Photonic Chip Foundry in Tempe, Arizona - Yahoo Finance - October 23rd, 2024 [October 23rd, 2024]
- Why experts are warning businesses to prepare for quantum now or face critical cyber risks when it arrives - ITPro - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computers Expected to Be Useful by 2026, Survey - IoT World Today - October 23rd, 2024 [October 23rd, 2024]
- ParTec AG and HZDR to Build AI Supercomputer Supporting Research in AI, Quantum Computing, and HPC - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Pete Shadbolt on Tackling the Challenges of Quantum Computing & Its Future Impact on Everyday Life - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- How to build a quantum computer that's actually useful - Space Daily - October 23rd, 2024 [October 23rd, 2024]
- Quantum Algorithms for Faster Pattern Matching in Genomics and Text Processing, and Data-Intensive Applications - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- 2025 Tech Trends Report: New Insights on IT Investment in AI, Quantum Computing, and Cybersecurity Published by Info-Tech Research Group - PR Newswire - October 23rd, 2024 [October 23rd, 2024]
- Next Quantum Computer Comes To Netherlands - Mirage News - October 23rd, 2024 [October 23rd, 2024]