New quantum physics, solving puzzles of Wheeler’s delayed choice and a particle’s passing N slits simultaneously and quantum oscillator in experiments…
In photoelectric effect, light waves cannot knock electrons out; and in a photons passing through many slit experiment, a photon cannot pass through many slits at the same time. Namely, the two physical processes, respectively, reflect one aspect of wave-particle duality of quantum particle. On the other hand, in photoelectric effect, photons can knock electrons out; in the many slit experiment, a photon light wave can pass through many slits at the same time. The two physical processes then are complementarily equivalent in wave-particle duality of quantum particle. That is, in wave-particle duality of quantum particle, the first and the second cases use the particle property and the wave property, respectively. Namely, a photon can show as either particle or wave, but cannot be observed as both at the same time for a physics process.
We now generally show them by exact deduction.
In 4-dimensional momentum representation of quantum theory, when considering wave function (phi (vec{p},E)) of momentum representation, one has25
$$ psi (vec{r},t) = frac{1}{{(2pi hbar )^{2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{{i(vec{p} cdot vec{r} - tE)/hbar }} dvec{p}dE = frac{1}{{(2pi hbar )^{3/2} }}int_{ - infty }^{infty } {} varphi (vec{p},t)e^{{ivec{p} cdot vec{r}/hbar }} dvec{p} $$
(1)
Equation(1) is a general Fourier transformation of ( , phi (vec{p},E)) (about the plane wave energy E and momentum (vec{p})) from the four-dimensional momentum representation state vector ( , phi (vec{p},E)) to the projection of the plane wave basic vector (e^{{i(vec{p} cdot vec{r} - tE)/hbar }}) and making integration for getting ( , psi (vec{r},t)), which make ( , psi (vec{r},t)) have not only the characteristics of the probabilistic state vector of the particle but also the characteristics of the plane wave, i.e., make ( , psi (vec{r},t)) have the state vector characteristics of wave-particle duality.
Because the momentum representation state vector ( , phi (vec{p},E)) is nonlocal, it also reflects that the system has the global characteristics of momentum (vec{p}) and energy (E), this global property can be the integrity of the particle, e.g., even including different physics qualities, e.g., spin, since the different qualities are not related to space coordinates.
Therefore, the expression (1) exactly shows wave-particle dualitys origin which displays that the wave property is originating from the plane wave part of the general Fourier expansion, and the particle property is originating from the general Fourier expansion coefficients with the particles global property even including different spins.
Therefore, we discover, for arbitrary particle, on an aspect, it propagates with the plane wave of the four-dimensional momentum ((vec{p},E)) as the propagation amplitude of the plane wave; on another aspect, it moves as a particle with the four-dimensional momentum ((vec{p},E)). Especially, when the expanding coefficients have different spins, it moves as a particle with both the four-dimensional momentum ((vec{p},E)) and the different spins, which are the new true physics and the new physical pictures, and uncover the corresponding expressions contributions of both wave part and particle part of wave-particle duality origin. Namely, Eq.(1) is the function of unified expression of wave-particle duality.
A little bit of philosophical insight on what this work means that the unified expression of wave-particle duality is just the superposition state of wave-particle duality, and the superposition state of wave-particle duality is physically real.
Furthermore, the infinite big momenta and energy show their corresponding to infinite big velocity in Eq.(1), and then the infinite big velocity is included, i.e., the wave function (1) of coordinate representation has the contribution of infinite big momentum or speed, namely, the wave function at any spatial and time points has the contributions from negative to positive infinite big momenta or speeds. Similarly, when we do the inverse Fourier transformation of Eq.(1) about whole spacetime coordinates, we find that the wave function of 4-dimentional momentum representation has the contributions of the whole 4-dimentional spacetime, i.e., the wave function at any 4-dimentialal momentum spatial point has the contributions from the whole spacetime. Thus, the above both cases just the reasons that Feynman path integral can be done in whole 4-dimentional spacetime or momentum space.
Using Eq.(1), we have wave function of momentum representation at time t
$$ varphi (vec{p},t) = frac{1}{{(2pi hbar )^{1/2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{ - itE/hbar } dE $$
(2)
On the other hand, using Huygens' Principle, one has the basic wave analysis:
Every point of a wave front may be considered the source of secondary wavelets that spread out in all directions with a speed equal to the speed of propagation of the waves. What this means is that when one has a wave, he can view the "edge" of the wave as actually creating a series of circular waves. These waves combine together in most cases to just continue the propagation, and in some cases there are significant observable effects. The wave front can be viewed as the line tangent to all of these circular waves26.
Further using Eq.(1) and Huygens principle above, we have N subwave functions through N slits
$$ psi (vec{r}_{j} ,t) = frac{1}{{(2pi hbar )^{2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{{i(vec{p} cdot vec{r}_{j} - tE)/hbar }} dvec{p}dE = frac{1}{{(2pi hbar )^{3/2} }}int_{ - infty }^{infty } {} varphi (vec{p},t)e^{{ivec{p} cdot vec{r}_{j} /hbar }} dvec{p} $$
(3)
where j=1,2,,N. No losing generality and for simplicity, taking N=2 just shows the up slit and down slit, respectively, in Young's Double Slits in Fig.2.
Interference of a particle plane wave in Young's double slit experiment.
Therefore, Eqs.(1)(3) can also be seen as a kind of expressions of Huygens principle. Consequently, these Fourier expansions physically imply new physics, and are not only just the mathematical tools.
The superposition density function of two subwaves is just Eq.(5) in Section Solutions to Wheelers delayed choice puzzle and puzzle of a particles passing double slits simultaneously by the physics processes of the exact quantum physics expressions, the interference terms of the two subwaves in Fig.2 are just the third term and fourth term in Eq.(5).
These properties are exactly conforming to the plane wave properties of the single particle, thus a particle plane wave can simultaneously pass through N slits, for simplicity, Young's Double Slits in Fig.2, Eq.(3) just generally give the both subwave functions that simultaneously pass through N slits, for simplicity, two slits s1 and s2 in Young's Double Slits, respectively.
The N subwave functions have the same amplitude (phi (vec{p},E)) for some certain (vec{p},E), (e^{{i(vec{p} cdot vec{r}_{j} - tE)/hbar }}) (j=1, 2,, N) are just N plane subwave functions in Eq.(3), and the N probabilistic wave functions in Eq.(3) integrate for ((vec{p},E)) from negative infinite to positive infinite, i.e., having considered all possibility, which make the N expressions (3) exact.
The global property of a particle does not allow the single particle to simultaneously pass through N slits, for simplicity, Young's double slits, in reality, the interference of a particle wave is observed, which just show a particle wave simultaneously does pass the N slits, for simplicity, the double slits, but all theories up to now cannot solve the hard puzzle of a particles passing the N slits, e.g., Youngs double slits simultaneously.
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]
- Quantum Computing is a cross industry revolution, and we want to be part of it - CTech - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Stocks Fall. Here's A Look At Upcoming News Events. - Investor's Business Daily - April 1st, 2025 [April 1st, 2025]
- Honeywell May Take Quantinuum Public in Next 2 Years. Its a Quantum Thing. - Barron's - April 1st, 2025 [April 1st, 2025]
- The 6 different types of quantum computing technology - TechTarget - April 1st, 2025 [April 1st, 2025]
- Nvidia to Open Quantum Computing Research Center in Boston This Year in a Landmark for Regions Tech Sector - The Harvard Crimson - April 1st, 2025 [April 1st, 2025]
- Quantum Threats Are HereWhy the Next Cybersecurity Boom May Already Be Underway - Baystreet.ca - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco Validate Quantum and AI Workflow Towards Generative Drug Discovery - The Quantum Insider - April 1st, 2025 [April 1st, 2025]
- The High Cost of Quantum Randomness Is Dropping - Quanta Magazine - April 1st, 2025 [April 1st, 2025]
- Beyond encryption: Why quantum computing might be more of a science boom than a cybersecurity bust - oodaloop.com - April 1st, 2025 [April 1st, 2025]
- NVIDIA (NVDA): One of the Best Quantum Computing Stocks to Buy Right Now? - Yahoo Finance - March 18th, 2025 [March 18th, 2025]
- I work at a leading quantum lab: Here are the qualifications recruiters in the field are looking for - Business Insider - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Yahoo - March 18th, 2025 [March 18th, 2025]
- Controversy erupts over claims Microsoft invented a new state of matter - Salon - March 18th, 2025 [March 18th, 2025]
- Chinese quantum processor is 1 quadrillion times faster than the best supercomputer and it rivals Google's breakthrough Willow chip - Livescience.com - March 18th, 2025 [March 18th, 2025]
- IQM Quantum wants to be the European answer to Google and IBM - Sifted - March 18th, 2025 [March 18th, 2025]
- Twisting atomically thin materials could advance quantum computers - University of Rochester - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Stock Hits $11: Heres What This Top Analyst Predicts Ahead - TipRanks - March 18th, 2025 [March 18th, 2025]
- A Computer Has Achieved "Quantum Supremacy" On Real-World Problem For First Time, Company Claims - IFLScience - March 18th, 2025 [March 18th, 2025]
- INVESTOR ALERT: Pomerantz Law Firm Announces the Filing of a Class Action Against Quantum Computing Inc. and Certain Officers - QUBT - PR Newswire - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Sets Benchmark with New Computing Advance - News and Statistics - IndexBox, Inc. - March 18th, 2025 [March 18th, 2025]
- Rigettis Rally Hits a Bump Are Insider Sales a Red Flag? - Wall Street Pit - March 18th, 2025 [March 18th, 2025]
- Quantum AI: What Is It and How Does It Work? - CNET - March 18th, 2025 [March 18th, 2025]
- D-Wave Shares Jump 46.9% on Friday - Should You Buy QBTS Stock? - TradingView - March 18th, 2025 [March 18th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims Breakthrough. Quantum Computing Stocks Gain. - Investor's Business Daily - March 13th, 2025 [March 13th, 2025]
- Physicists Just Witnessed a Quantum Phase Flip and Its More Mind-Bending Than Expected - SciTechDaily - March 13th, 2025 [March 13th, 2025]
- Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem - Business Wire - March 13th, 2025 [March 13th, 2025]
- What is quantum computing and how it could change the tech world - Yahoo Finance - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Giant IonQ Is Down More Than 60% From its All-Time High. Should You Buy The Dip? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Deep Dive: A Look at The Quantum Advantage Findings -- And The Questions That Remain - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave claims to have achieved quantum supremacy at last, but others disagree - SiliconANGLE News - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims It Achieves Quantum Supremacy. What the Breakthrough Means for Quantum Computing. - Barron's - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising After Earnings. - Barron's - March 13th, 2025 [March 13th, 2025]
- Nu Quantum Partners With The University of Sussex, Cisco, and Infineon to Scale Trapped Ion Quantum Computers - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- IonQ Could Be a Quantum Computing Powerhouse, but Is It a Buy Right Now? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Quantum Inc. Reports Fourth Quarter and Year-End 2024 Results - TradingView - March 13th, 2025 [March 13th, 2025]
- Hybrid Quantum Workflow Moves Toward Real-World Applications - IoT World Today - March 13th, 2025 [March 13th, 2025]
- As NVIDIAs Quantum Day Nears, Analysts Suggest Event is More Than a Gesture - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising Anyway. - MSN - March 13th, 2025 [March 13th, 2025]
- Recent Breakthroughs Accelerate The Race For Quantum Computing - Forbes - March 13th, 2025 [March 13th, 2025]
- An operating system for executing applications on quantum network nodes - Nature.com - March 13th, 2025 [March 13th, 2025]
- D-Wave Reports Quantum Advantage in Materials Simulation Study - HPCwire - March 13th, 2025 [March 13th, 2025]
- Experts Weigh in on Microsofts Topological Qubit Claim - Physics - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Inc. To Attend 37th Annual ROTH Conference - PR Newswire - March 13th, 2025 [March 13th, 2025]
- Quantum leap: Passwords in the new era of computing security - BleepingComputer - March 13th, 2025 [March 13th, 2025]
- Quantum computing will reach its inflection point in 2029: How investors should prepare - Finextra - March 13th, 2025 [March 13th, 2025]
- Quantum computing - Unlocking science, and maybe your bank account - Home Team Science and Technology Agency - March 13th, 2025 [March 13th, 2025]
- SXSW 2025 live coverage: The potential of quantum computing, Ireland's prime minister makes a splash, and a Metallica concert in Apple Vision Pro -... - March 13th, 2025 [March 13th, 2025]
- QuamCore Emerges From Stealth With $9 Million in Seed Funding to Build Worlds First Scalable 1 million Qubit Quantum Computer - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- QuamCore Emerges with $9M Seed Funding to Build Scalable Million-Qubit Quantum Computer - Quantum Computing Report - March 13th, 2025 [March 13th, 2025]
- QuamCore emerges from stealth with $9 million in Seed funding to build a 1 million qubit quantum computer - Scientific Computing World - March 13th, 2025 [March 13th, 2025]
- D-Wave says it achieved quantum supremacy using its computer - Fast Company - March 13th, 2025 [March 13th, 2025]
- D-Waves Annealing Quantum Computer Just Beat a Supercomputer Heres Why It Matters - Wall Street Pit - March 13th, 2025 [March 13th, 2025]
- Recently, a series of quantum computer-themed exchange-traded funds (ETFs) have been released in the.. - - March 13th, 2025 [March 13th, 2025]
- China unveils quantum computer thats one quadrillion times faster than existing supercomputers - Yahoo Finance UK - March 7th, 2025 [March 7th, 2025]
- China unveils quantum computer that could spell new era of processors - The Independent - March 5th, 2025 [March 5th, 2025]
- Startup PsiQuantum says it is making millions of quantum computing chips - Reuters - March 1st, 2025 [March 1st, 2025]
- A quantum computing startup says it is already making millions of light-powered chips - The Conversation - March 1st, 2025 [March 1st, 2025]
- Quantum Breakthrough: Microsoft and Purdue Unlock the Future of Topological Qubits - SciTechDaily - March 1st, 2025 [March 1st, 2025]
- Interested in Quantum Computing Investing? Here Are 4 Fantastic Picks to Maximize Your Odds of Picking a Winner - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- If I Could Only Buy 1 Quantum Computing Stock, This Would Be It - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- Amazon unveils quantum chip, aiming to shave years off development time - Reuters - March 1st, 2025 [March 1st, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - March 1st, 2025 [March 1st, 2025]
- Microsoft makes quantum computing breakthrough - Drexel University The Triangle Online - March 1st, 2025 [March 1st, 2025]
- Google, Microsoft, and now Amazon: The quantum computing race is heating up - Quartz - March 1st, 2025 [March 1st, 2025]
- Groundbreaking qubit technology reduces errors in quantum computing - The Brighter Side of News - March 1st, 2025 [March 1st, 2025]
- Fortanix Tackles Quantum Computing Threats With New Algorithms - Dark Reading - March 1st, 2025 [March 1st, 2025]