‘Physicists Have Always Been Philosophers’: In Conversation With Frank Wilczek – The MIT Press Reader
The Nobel Prize-winning physicist discusses free will, time travel, and the relationship between innovation and scientific discovery.
Todays scientific landscape teems with conversations and interactions between scientists and humanists. The cutting edge of new knowledge is the product of collaboration across traditional disciplinary boundaries; it emerges, I believe, from places where researchers from diverse backgrounds come together to solve concrete problems.
This is the premise that sparked the idea for my book Is the Universe a Hologram? Scientists Answer the Most Provocative Questions, which comprises a series of interconnected dialogues with leading scientists who are asked to reflect on key questions and concepts about the physical world, technology, and the mind. These thinkers offer both specific observations and broader comments about the intellectual traditions that inform these questions; in doing so, they reveal a rich seam of interacting ideas.
When the book went to press a few years ago, I hadnt yet had a chance to sit down with Frank Wilczek, the Nobel Prize-winning physicist whose work Ive long admired. Our conversation which took place in 2020 during his visit to the city of Valencia, Spain, as a member of the jury of the prestigious Rei Jaume I Awards made its way into the recently published Spanish edition of the book titled De neuronas a galaxias (From neurons to galaxies). Im so pleased to share our discussion, translated and edited for length, below.
Adolfo Plasencia: Professor Wilczek, lets jump right into a difficult but, I think, fascinating subject. In my dialogue with the physicist Ignacio Cirac, a pioneer in the field of quantum computing, he said that quantum physics in a way takes into account free will. Its a bold statement, and Ive been eager to get your take on it. Do you agree with Cirac?
Frank Wilczek: I think the question can be understood in two different ways. So let me answer each of them separately.
The first interpretation is to ask whether quantum mechanics explains the phenomenon of free will, or whether there is something else that must be taken into account in our description of the world which is not within the scope of quantum mechanics or which is not within physics as we understand it. And the answer is that we dont really know for sure. But there seems to be a very good hypothesis that I think scientists are in fact adopting, and it is that the phenomena of mental life, including free will, can be derived from the physical embodiment of mind in matter. So what we call emergent phenomena are qualitatively different behaviors that can be very difficult to see in the basic laws but can emerge in large systems with many components that have a rich structure. So, for example, when neurobiologists study the nervous system, when they study the brain, they adopt the working hypothesis that thought, memory all mental phenomena have a physical basis, have a physical correlate.
Another aspect is that you can ask yourself if, when we do physical experiments, we have to add something else that is mental. Do we have to make corrections for what people are thinking? Physicists now do very refined, precise, delicate experiments in which corrections have to be made for all sorts of things. You have to make corrections for trucks that pass by, you have to make corrections for electric and magnetic fields, you have to control the temperature very precisely, and so on, but something that people have never needed before is to make corrections related to what people are thinking. So I think there is very good circumstantial evidence that the world, the physical world, is not influenced by a separate mental world.
I believe that the barriers that physicists are encountering are not barriers of principle, but barriers of technique.
The second interpretation of the question is whether in the formulation of quantum mechanics one should involve the observer as a separate object that has free will, that decides what to observe. Quantum mechanics has an unusual mechanism since the theory has equations, and to interpret the equations one must make an observation. I believe that, eventually, in order to understand the phenomena of free will on a physical basis, and thus fully understand quantum mechanics, we will need to understand that we have that model of consciousness that corresponds to our experience of everyday life, which is fully based on quantum mechanics. At present, I dont think we have that. However, I believe that the barriers that physicists are encountering are not barriers of principle, but barriers of technique.
We are not advanced enough in quantum mechanics to make models where we can identify something wed begin to recognize as consciousness. Thats a big challenge for the future. But we have every reason to believe that this challenge can one day be met. So what we need is a model thats fully quantum mechanical and contains complicated objects that you can point to and say, thats behaving like a conscious mind and that thing is something I can recognize as a thinking entity. Part of the trouble, of course, is that the definition of consciousness is very slippery.
AP: Your response reminds me of something someone quipped to me after seeing the table of contents of my book and reading the discussion with Cirac: So physicists are now getting into philosophy too?
FW: Physicists have always been philosophers. In fact, historically, the beginnings of philosophy and of natural science, in ancient Greece, involved the same set of people. People like Pythagoras and Thales and Plato did not consider themselves philosophers or physicists, they were both. They developed the main issues of both disciplines, somehow, together, from the very beginning. Now, in recent years physics has become much more sophisticated and has become separated from academic philosophy, which is a discipline in itself, has its own techniques and body of academic literature, and so forth.
However, I dont think physicists should give up the enterprise of attempting to understand the world fully. They have made many advances in understanding the physical world, with precision, accuracy, and great depth, and I dont think this disqualifies them from addressing the classic questions of philosophy. On the contrary, I think that empowers them so that they can bring in new kinds of insights into what have become the traditional philosophical questions.
And I think many physicists have not wanted to do that, either because they are busy with physics or because they dont dare, but I think it is perfectly appropriate for physicists to also be philosophers. In fact, I think they should be, because many of the ideas weve learned about the physical world in physics are very surprising things that you wouldnt guess from everyday experience so I think we have things to teach philosophers. Especially since quantum mechanics is really a vast expansion of what we mean by reality, and it requires adjusting how you think. If you want to be a serious student of reality or of mind you really should know quantum mechanics. To me, a philosopher who doesnt know quantum mechanics is like a swimmer with his or her hands tied behind their back.
To me, a philosopher who doesnt know quantum mechanics is like a swimmer with his or her hands tied behind their back.
AP: Lets move into what Ill call the weird ideas questions stuff Ive been wondering about, as a non-scientist, coming from a position of great ignorance but with deep curiosity. If theres any known symbol or idea about quantum physics that for ordinary people clashes with everyday logic, thats the subject of Schrdingers cat. Dont you think its difficult to explain to people that, not knowing if the cat is dead or alive, when you try to find out, you come to the conclusion that the cat is both dead and alive at the same time? That is something rather strange, counterintuitive, even to university students who study the subject.
FW: There are many situations when you describe them by probability that you dont know before you observe what you will observe. That, almost by definition, is what probability means. You dont know what you can find when you look into it, when you make the observation, when you pick from a sample, or whatever, but the quantum mechanical situation is a little bit different. What makes it paradoxical is that there is a very real sense in which the cats alive state and dead state possibilities coexist in a way that is not true in classical situations. Now, this coexistence is not a practical situation for cats, but we can talk about a similar situation for atoms, and it does become practical for atoms. But, in the spirit of your question, let me go back to talking about cats.
In principle lets assume that after some time T, the probability of having a cat alive or the probability of having a cat dead, according to quantum mechanics, is predicted to be 50/50, so each of them is equally likely. We have that situation, and we can check it and experiment, so we have a lot of cats, and we can do the same experiment over and over again. But quantum mechanics tells you that if you do certain operations after that time T you can reverse the situation so that the cat will be certainly alive or that the cat will be certainly dead and both of those possibilities were present and you could restore them by doing different things to the initial situation, to the initial wave function.
So what is different about quantum mechanics, is that those two possibilities are not mutually exclusive, they both coexist in the situation and what happens when you observe is you find out whats called collapse of the wave function. You fix one possibility, but before you made the observation, before you intervened in the situation, both were present. And if you dont intervene, but let the systems stay close, dont observe it, manipulate it with some fields, never looking in to know if the cat is alive or dead, you can reverse the evolution and make it totally alive or you can make it totally dead. For real cats this is not practical at all, but it is for atoms If you are not talking about a live cat or a dead cat but about the spin of an atom, pointing up or down, you can literally do these things you can create a situation where there is a 50/50 percent chance that the spin is up or the spin is down, but then, by operating on that wave function, without observing, just operating on it, you can show that either possibility was really present.
AP: So you believe that quantum superposition is part of human logic
FW: Oh, yes! Well, some human beings do physics and quantum mechanics pretty successfully. You know, I do quantum mechanics sometimes and I make mistakes occasionally, but Ive always been able to correct them. There is no real doubt about how you apply quantum mechanics to physical situations; there are right and wrong answers. It can be hard to think about there are sometimes very counterintuitive aspects of quantum mechanics. You have to sort of take yourself outside the realm of common sense and think about some things differently, because if you did apply common sense you would get the wrong answer. Sometimes, it is only necessary to follow the equations. But you know, there are many people who practice quantum mechanics very successfully and use it in design of computers and all kinds of other strange gadgets, use it to do very many concrete things. It is certainly not beyond human comprehension.
You have to sort of take yourself outside the realm of common sense and think about some things differently, because if you did apply common sense you would get the wrong answer.
AP: All right, lets move on to the next issue: time travel. An article you published in Quanta magazine some time ago digs into the concept of the arrow of time, which was coined by Arthur Eddington almost 100 years ago but remains an unsolved problem of modern physics. This idea postulates the one-way direction or asymmetry of time. Let me just ask you directly: Why does time travel only work in science fiction, and therefore in the imagination, and not in our everyday reality?
FW: Well, this is a very complex question. Not only in content but also in formulation. So, let me try to boil your question down to essentials. One aspect is, what do physicists mean when they talk about a universal symmetry? Since you cant actually reverse [in the reality in which we live] the direction of time it sounds like metaphysics to say: Okay, if we reverse the direction of time, such and such and such will happen.
But, actually, it means something very concrete. It means if you have a physical situation where particles are moving with certain velocities, so at some initial moment you know where they are and what direction they are moving these are based on certain equations you can also discuss the situation where you struck with particles in the same space but moving in the opposite direction. So that if you change (in the equations) the direction of time, they would be moving in the opposite direction instead. You can see whether those two situations are governed by exactly the same equations.
Time reversal symmetry simply says that if you reverse the directions of rotation and the speeds of everything in your system, you will see that it is based on the same equations as if you did not. So that is what time reversal means very concretely for physicists. There are many details that are more complicated, that have to do with the spin and have to do with exotic kinds of particles. But thats the idea. And, we find in physics that that principle works very, very accurately. Not perfectly but very, very accurately. But in everyday life it doesnt seem that way. It doesnt seem that the direction of time forwards and backwards is experienced in the same way in our lives. Of course, it definitively isnt.
So, how is that consistent with the experiment I mentioned? Well, first of all, we cannot, as a practical matter, in any complicated system, let alone a human body, change the direction that every particle is moving. So you cant really do it, in practice. You cant get the direct consequence of the underlying time-reversal symmetry. The past and the future are very different and there is a long story about why that is, even though the basic equations look the same forwards and backwards. And I dont think its appropriate to get into that whole story now, but let me say something. The essence of it is that, in the beginning, at the very early stage of the universe, the universe was much hotter and denser and was expanding. That was the Big Bang. And the Big Bang was in the past, not in the future. So that tells you that things were very different in the past and that we are heading toward a future that is very different from the origin (of the universe). And by a long series of arguments about the formation of structure and the universe cooling down and so on, you can sketch a history of the universe that makes sense and accords with our experience of time going in only one direction, although in the fundamental equations, we would have the same behavior if it moved in the opposite direction.
AP: Whew, all right. Sci-fi writers beware
FW: I mean, it is a very intriguing possibility in principle that of reversing the direction of the motion of particles and getting them to reverse their evolution in time so that they reconstitute their state at an earlier time. Maybe if we did that for some key molecules, to reverse aging, for example. But in practice, we dont know what, if any, key elements we need to reverse, and so, the time-reversal symmetry of the fundamental laws does not help us in anything that is very practical for us.
AP: Finally, I want to ask you about something important to me, but not explicitly related to physics. I write and publish a lot about innovation, which has been a buzzword for decades and seems to still be. Everyone these days, from entrepreneurs to politicians, has to innovate. How do you view this term, its notion, and its meaning today, from your point of view as a scientist, but also just as a citizen? What differences do you see between the concepts of discovery, invention, and innovation in the world we live in now?
FW: I think we live in a very special time now, because of the means of communication and the aids to thinking that we have electronics and microelectronics and computer technology and telecommunication. With all these things, people can exchange ideas much more efficiently. People can get together and think. And on the other hand, there is more to think about because the technology is very powerful and we understand matter very, very well. So we can design things based on imagination and planning and be sure that they work or at least be pretty confident that they will work. So thats innovation kind of exploding our knowledge of the world in order to make improvements here and there. And, to me, as a physicist, I am very proud that so much innovation has emerged from a profound understanding of the physical world and reality, that was provided originally by people who were just curious about how the physical world works, and in particular, the quantum world that we were talking about.
All microelectronics, transistors, semiconductors, etc. wouldnt exist without a profound understanding of matter that physics produced during the 20th century. And this isnt over yet. We understand, but we have not exhausted the potential thats been opened up by this profound understanding of the world. In fact, the theory itself tells us that there is much more room for improvement. Richard Feynman, one of my heroes, gave a famous talk in 1959 called Theres plenty of room in the bottom, which anticipated the richness of the micro-world: There are many, many, many atoms in even small things. And if you can work skillfully with them, you can do little machines, you can do useful things, in medicine, and in computing, of course. In principle, he foresaw this would open up various possibilities in many directions; of course he couldnt predict the details but he pointed in that direction. And now we see them embodied in microelectronics, nanotechnology, and modern telecommunications. All these things come from understanding this microcosmic world really well, in great detail and depth. A recent Nobel Prize in Chemistry was awarded for building molecules that function as motors and understanding how to do that. So, in many ways, this fundamental science is opening up new possibilities for innovation.
Now, you asked me about the relationship between innovation and scientific discovery. I think they kind of shade into each other. But basically science, curiosity-driven basic science is more long-term. It doesnt focus on goals that you know how to reach, and you just want to reach them quickly or efficiently. It takes us into unknown territory, where we dont know what were doing or why were doing it. But that kind of thing provides new possibilities for innovation later. So I would say that scientific research is continuous with innovation, it is a long-term curiosity-driven enterprise. While short-term innovation harvests the fruit of discovery.
Adolfo Plasencia is a writer and columnist who covers science and technology, and the author of Is the Universe a Hologram? Scientists Answer the Most Provocative Questions.
Read the original post:
'Physicists Have Always Been Philosophers': In Conversation With Frank Wilczek - The MIT Press Reader
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]
- Quantum Computing is a cross industry revolution, and we want to be part of it - CTech - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Stocks Fall. Here's A Look At Upcoming News Events. - Investor's Business Daily - April 1st, 2025 [April 1st, 2025]
- Honeywell May Take Quantinuum Public in Next 2 Years. Its a Quantum Thing. - Barron's - April 1st, 2025 [April 1st, 2025]
- The 6 different types of quantum computing technology - TechTarget - April 1st, 2025 [April 1st, 2025]
- Nvidia to Open Quantum Computing Research Center in Boston This Year in a Landmark for Regions Tech Sector - The Harvard Crimson - April 1st, 2025 [April 1st, 2025]
- Quantum Threats Are HereWhy the Next Cybersecurity Boom May Already Be Underway - Baystreet.ca - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco Validate Quantum and AI Workflow Towards Generative Drug Discovery - The Quantum Insider - April 1st, 2025 [April 1st, 2025]
- The High Cost of Quantum Randomness Is Dropping - Quanta Magazine - April 1st, 2025 [April 1st, 2025]
- Beyond encryption: Why quantum computing might be more of a science boom than a cybersecurity bust - oodaloop.com - April 1st, 2025 [April 1st, 2025]
- NVIDIA (NVDA): One of the Best Quantum Computing Stocks to Buy Right Now? - Yahoo Finance - March 18th, 2025 [March 18th, 2025]
- I work at a leading quantum lab: Here are the qualifications recruiters in the field are looking for - Business Insider - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Yahoo - March 18th, 2025 [March 18th, 2025]
- Controversy erupts over claims Microsoft invented a new state of matter - Salon - March 18th, 2025 [March 18th, 2025]
- Chinese quantum processor is 1 quadrillion times faster than the best supercomputer and it rivals Google's breakthrough Willow chip - Livescience.com - March 18th, 2025 [March 18th, 2025]
- IQM Quantum wants to be the European answer to Google and IBM - Sifted - March 18th, 2025 [March 18th, 2025]
- Twisting atomically thin materials could advance quantum computers - University of Rochester - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Stock Hits $11: Heres What This Top Analyst Predicts Ahead - TipRanks - March 18th, 2025 [March 18th, 2025]
- A Computer Has Achieved "Quantum Supremacy" On Real-World Problem For First Time, Company Claims - IFLScience - March 18th, 2025 [March 18th, 2025]
- INVESTOR ALERT: Pomerantz Law Firm Announces the Filing of a Class Action Against Quantum Computing Inc. and Certain Officers - QUBT - PR Newswire - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Sets Benchmark with New Computing Advance - News and Statistics - IndexBox, Inc. - March 18th, 2025 [March 18th, 2025]
- Rigettis Rally Hits a Bump Are Insider Sales a Red Flag? - Wall Street Pit - March 18th, 2025 [March 18th, 2025]
- Quantum AI: What Is It and How Does It Work? - CNET - March 18th, 2025 [March 18th, 2025]
- D-Wave Shares Jump 46.9% on Friday - Should You Buy QBTS Stock? - TradingView - March 18th, 2025 [March 18th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims Breakthrough. Quantum Computing Stocks Gain. - Investor's Business Daily - March 13th, 2025 [March 13th, 2025]
- Physicists Just Witnessed a Quantum Phase Flip and Its More Mind-Bending Than Expected - SciTechDaily - March 13th, 2025 [March 13th, 2025]
- Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem - Business Wire - March 13th, 2025 [March 13th, 2025]
- What is quantum computing and how it could change the tech world - Yahoo Finance - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Giant IonQ Is Down More Than 60% From its All-Time High. Should You Buy The Dip? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Deep Dive: A Look at The Quantum Advantage Findings -- And The Questions That Remain - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave claims to have achieved quantum supremacy at last, but others disagree - SiliconANGLE News - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims It Achieves Quantum Supremacy. What the Breakthrough Means for Quantum Computing. - Barron's - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising After Earnings. - Barron's - March 13th, 2025 [March 13th, 2025]
- Nu Quantum Partners With The University of Sussex, Cisco, and Infineon to Scale Trapped Ion Quantum Computers - The Quantum Insider - March 13th, 2025 [March 13th, 2025]